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Abstract:

This paper proposes a novel cloud resource scheduling framework that explicitly integrates the Age of
Information (AOI) metric into the scheduling decision process, enabling direct quantification and optimization
of information freshness. The framework employs an enhanced deep reinforcement learning (DRL) approach
to learn adaptive scheduling policies in dynamic cloud environments. A multidimensional reward function is
designed to jointly optimize AOI, resource utilization, and task completion performance, allowing system-level
freshness optimization without compromising efficiency. To improve learning stability and convergence,
prioritized experience replay and n-step learning are incorporated into the training process. Extensive
simulation results demonstrate that the proposed framework consistently achieves lower average AOI under
diverse workload conditions while satisfying resource capacity and energy consumption constraints. These
findings provide both theoretical insights and practical guidance for improving real-time cloud service quality
and supporting timely decision-making in cloud and edge computing environments.
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1. Introduction

The rapid expansion of real-time and latency-sensitive applications has placed increasing pressure on cloud
computing platforms to deliver timely and efficient resource management. Conventional cloud scheduling
mechanisms, which primarily focus on throughput, utilization, or cost, often struggle to cope with the highly
dynamic and time-critical nature of modern workloads, especially when the freshness of processed
information directly affects system outcomes and service quality (Gonzalez et al., 2017). As cloud systems
handle ever-growing data volumes generated at high velocities, ensuring that information remains up to date
has become a critical challenge influencing both operational efficiency and decision accuracy.

Age of Information (AOI) has emerged as an effective metric for characterizing information freshness by
capturing how outdated the most recently received data is relative to the current time. Originally introduced
in communication and networking research, AOI provides a temporal perspective that complements traditional
performance indicators such as delay and throughput (Xu et al., 2020). Integrating AOI into cloud resource
scheduling enables systems to explicitly account for the relevance of data over time rather than optimizing
solely for computational efficiency. This consideration is particularly important in edge and distributed cloud
environments, where decisions must be made quickly using the most current information available (Li et al.,
2021).
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Applying AOI concepts within cloud computing introduces challenges that differ significantly from those
encountered in communication networks. In cloud environments, information aging is influenced not only by
queuing delays but also by interactions among virtualized resources, execution dependencies, storage
access, and network conditions. These factors collectively create a complex optimization landscape in which
minimizing AOI must be balanced against competing objectives such as resource utilization, energy efficiency,
and deadline compliance. Furthermore, cloud workloads are inherently heterogeneous, encompassing
compute-intensive, data-intensive, and latency-sensitive tasks, each exhibiting distinct sensitivities to
information staleness (Wu et al., 2020). As a result, static or rule-based scheduling strategies are often
insufficient for addressing diverse and evolving AOI requirements.

Traditional scheduling techniques, including heuristic-based and deterministic optimization methods, typically
rely on simplified system models and fixed objective formulations. While effective under stable conditions,
these approaches lack the adaptability required to manage the stochastic and rapidly changing behavior of
cloud environments. Moreover, optimizing AOI alongside conventional metrics introduces complex trade-offs
that are difficult to capture using single-objective or weighted static optimization frameworks. Recent
advances in machine learning, particularly reinforcement learning (RL), offer promising alternatives for
handling such complexity. RL enables systems to learn scheduling policies directly through interaction with
the environment, making it well suited for dynamic decision-making problems (Nie et al., 2021).

Motivated by these observations, this work proposes an AOl-aware deep reinforcement learning framework
for cloud resource scheduling. By modelling the scheduling process as a Markov Decision Process, the
proposed approach enables the joint optimization of information freshness, resource utilization, and task
deadline satisfaction. The framework incorporates a carefully designed AOIl-centric reward function and
leverages deep reinforcement learning to capture nonlinear dependencies among workload characteristics
and system states. To further enhance learning efficiency and stability under highly variable cloud workloads,
the proposed method integrates prioritized experience replay and multi-step learning mechanisms. This
design allows the scheduler to continuously adapt its policy and maintain high performance across diverse
operating conditions.

2. Related Work
2.1 Cloud Resource Scheduling

Cloud resource scheduling has evolved from static heuristic approaches toward adaptive, intelligence-driven
solutions as cloud platforms have grown in scale and complexity. Early scheduling methods focused on
balancing load and maximizing utilization using deterministic heuristics or mathematical optimization. Energy-
aware strategies, such as those proposed by Beloglazov et al. (2012), demonstrated that intelligent
scheduling could significantly reduce power consumption while maintaining service guarantees.

As cloud applications increasingly incorporated deadlines and time-critical constraints, researchers
introduced deadline-aware scheduling techniques to balance execution cost and timeliness (Sahni and
Vidyarthi, 2018). However, the growing heterogeneity and unpredictability of cloud workloads exposed the
limitations of static models, motivating the adoption of learning-based approaches. Recent studies have
shown that deep reinforcement learning can autonomously learn efficient allocation policies and respond
effectively to workload fluctuations, making it a promising foundation for next-generation cloud scheduling
systems (Belgacem et al., 2022).

2.2 Age of Information

AOI was introduced as a metric to quantify information freshness by measuring the elapsed time since the
most recent update was generated at the source (Yates et al.,, 2021). Subsequent research established
theoretical foundations for AOI in queueing systems and demonstrated that minimizing AOI differs
fundamentally from optimizing delay or throughput (Costa et al., 2016; Moltafet et al., 2020). These insights
revealed AOI as a distinct and valuable optimization objective.

Beyond communication networks, AOl has been applied to wireless systems, vehicular networks, 5G
infrastructures, control systems, caching, and IoT applications, where timely information delivery is critical
(Kadota et al., 2018; Li et al., 2021; Chang et al., 2024). These studies highlight AOI’s versatility and its
relevance to distributed computing environments, motivating its integration into cloud scheduling frameworks.
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2.3 Reinforcement Learning for Cloud Systems

Reinforcement learning has gained widespread attention for solving sequential decision-making problems in
uncertain environments. Its ability to learn optimal policies through trial-and-error interaction makes it well
suited for cloud resource management, where system conditions continuously evolve. Prior work has
demonstrated the effectiveness of RL and deep RL in optimizing energy consumption, task scheduling, and
resource provisioning in cloud data centre’s (Singh et al., 2017; Tao et al., 2022).

Recent advances have focused on improving learning stability and scalability through techniques such as
prioritized experience replay, duelling architectures, and hierarchical learning (Ullah et al., 2023). These
enhancements have significantly improved convergence speed and policy robustness, enabling practical
deployment in large-scale cloud environments.

2.4 Cloud Scheduling

The incorporation of Age of Information (AOI) into cloud scheduling has emerged as an early yet increasingly
significant research area, driven by the need to manage information freshness alongside traditional
performance objectives. Early studies primarily explored the integration of AOI metrics within conventional
scheduling frameworks. For example, Pal et al. (2023) introduced a scheduling strategy for cloud-based loT
systems that jointly accounts for throughput and data freshness, demonstrating that AOl-aware policies can
substantially improve the timeliness of data processing in cloud environments.

With the expansion of edge and distributed computing, AOI-driven scheduling approaches have gained
further attention. Qin et al. (2023) proposed an AOIl-based task offloading mechanism for mobile edge
computing networks, explicitly balancing computational delay against information freshness. Their findings
emphasized the growing relevance of AOI in decentralized computing architectures, where delayed or
outdated information can significantly degrade system performance.

In parallel, reinforcement learning has become an increasingly popular tool for addressing time-sensitive
scheduling challenges in cloud systems. Huang et al. (2022) developed a deep reinforcement learning—based
framework for deadline-aware task scheduling, achieving notable improvements in both task completion time
and resource utilization. This work highlighted the effectiveness of learning-based approaches in adapting to
dynamically changing cloud workloads. Similarly, Wang et al. (2021) proposed a scheduling method using
adaptive reinforcement learning that simultaneously optimizes energy consumption and deadline compliance
in cloud data centers. Their study demonstrated that reinforcement learning can effectively manage multiple,
often competing, time-critical objectives, reinforcing its suitability for modern cloud resource scheduling
scenarios.

3. System Model and AOI-Aware Problem Formulation

This section develops a structured framework for embedding the Age of Information (AOI) concept into cloud
resource scheduling. We first introduce the system model by specifying the main elements of the cloud
environment, including the computing nodes, incoming task stream, and resource constraints.

Next, AOl is reinterpreted for cloud execution to quantify information freshness during task processing, and a
practical computation method is presented. Based on these definitions, we express the AOIl-aware scheduling
task as a mathematical optimization problem, including the objective function and operational constraints.
Finally, we describe how AOQlI is incorporated into scheduling decisions through priority scoring and allocation
rules, showing how freshness-aware scheduling can improve both responsiveness and efficiency. This
formulation provides the basis for the AOIl-aware scheduling algorithms proposed in subsequent chapters.

3.1 System Model

We consider a cloud computing setting in which tasks arrive continuously and differ in computational and
timing requirements. Each task is represented using its arrival time, instruction demand, deadline, memory
requirement, and priority. Because tasks arrive dynamically, the cloud scheduler must allocate resources in
real time to achieve timely execution while maintaining effective utilization of compute and memory resources.
Fig. 1 illustrates the overall scheduling architecture, where multiple system modules interact to support task
admission, scheduling, and execution.
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Fig. 1. Cloud Computing Resource Scheduling Framework

The cloud infrastructure is modelled as a set of heterogeneous computing nodes:
N={1,2,...,n}. Each node i € N is characterized by its processing capacity Ci (in instructions per second)
and its available memory Mi(t) at time t. Node energy usage is represented by a utilization-dependent
function Ei(u), where u is CPU utilization.

Tasks form a dynamic workload set: T = {1, 2, ... , m}, where tasks arrive over time. Each task j € T is
described by the tuple (aj, ej, dj, mj, pj), In this context, aj represents the arrival time, ej denotes the
execution requirement in instructions, dj indicates the deadline, mj refers to the memory requirement, and
pj signified pj is the priority level.

Fig. 1 illustrates how the AOl-aware scheduler, acting as the central decision-making entity, first queues
tasks before processing them. The scheduler observes the system state, including node utilization and
resource availability, and also accounts for AOI-related freshness indicators. Task-to-node allocation is
expressed using a binary decision variable xij(t), where xij(t) = 1 if task j is assigned to node i at time ¢,
and 0 otherwise.

The execution time of task j on node i is defined as tij = ej / Ci. The system state at time t is denoted as:
S(t) = {s1(t), ... , sn(t)}, where si(t) captures the status of node i, including CPU utilization and remaining
memory.

The completion time of task j, denoted tcj, depends on the assigned node and its processing capability. It is
defined as the earliest time at which the cumulative processing delivered to the task meets or exceeds its
execution demand. In addition, the framework includes a feedback mechanism that monitors key performance
indicators, including AOI values, and uses these observations to improve later scheduling decisions.

3.2 AOl in Cloud Computing

The Age of Information metric was originally introduced in communication-network settings to measure the
freshness of updates. In this work, AOI is adapted to cloud computing to quantify the timeliness of task
execution. Here, AOI represents how long it has been since a task’s most recent update became available,
thereby reflecting the staleness of the task-related information at any given time.

For each task j € T, the AOI at time t is denoted by 4j(t) and defined as:
Aj(t)=t-aj +pjt) (1)

where t is the current time, aj is the task arrival time, and pj(t) is the amount of processing completed for
task j up to time t. The processing term pj(t) is computed as:

pj(t) = min{t - sj, ej / Ci}

where sj is the execution start time of task j, ej is its instruction demand, and Ci is the capacity of the node
executing the task.

Once task j completes, its final AOl is given by:

Aj=tcj -~ aj (2)
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To describe system-level freshness, we define the average AOI at time t as:
A_avg(t) = (1/]Tt]) x 3_{jeTt} Aj(t) (3)

where Tt is the set of tasks currently present in the system at time t (queued or executing), and |Tt]| is its
cardinality.

For long-horizon assessment, we define the time-averaged AOI over [0, T] as:

A T=(1/T)x[,T A_avg(t) dt (4)

Since real systems typically operate in discrete time, Eq. (4) is approximated using sampled time points:
A_T=(1/K)x Y {k=1}K} A_avg(tk) (5)

where K is the number of sampling steps and tk represents the sampled time instants.

To capture worst-case freshness degradation, the Peak Age of Information (PAQI) for task j is defined as:
PAOIj = max Aj(t), aj < t < tcj (6)

The average PAOI across all tasks is:

PAOI_avg = (1/|T]) x 3_{jeT} PAOI;j (7)

These measures jointly characterize both mean and extreme freshness behaviour. However, reducing AOI
may interact with other objectives such as throughput maximization or energy reduction. Therefore, an AOI-
aware scheduler must manage trade-offs among competing metrics. Moreover, real-time AQI tracking is
challenging due to time-varying task arrivals, heterogeneous runtimes, and potential bottlenecks. To keep
overhead low, the proposed framework assumes incremental AOI updates and efficient tracking structures.

3.3 Problem Formulation

Using the AOI definitions in Section 3.2, the cloud scheduling problem is formulated as a multi-objective
optimization model. The main goal is to reduce average AOIl while also accounting for conventional
performance measures such as system utilization and energy consumption. Let xij(t) be the binary
assignment variable, where xij(t) = 1 indicates that task j is mapped to node i at time t, and 0 otherwise.

The objective function is written as: minimize: f = w,f_AOI + w,f util + w; energy (8)

where f_AOI corresponds to the time-averaged AOI in Eq. (4), f_AQI util measures utilization performance
(for example, via an averaged utilization integral), and energy captures cumulative energy use across nodes
(for example, via utilization-dependent power models). The weights w;, w,, and w; control the relative
importance of these objectives.

This optimization is subject to the following constraints.

Task assignment constraint: each task must be assigned to exactly one node during its allowable
scheduling window.

S {ieN} xij(t) = 1,Vj €T, t € [aj, dj] (9)

Capacity constraint: the total execution demand allocated to a node must not exceed its processing
capacity.

> {jET} xij(t) - ej < Ci, Vi € N, Vt (10)

Memory constraint: total assigned memory demand must remain within available memory:

> {jeT} xij(t) - mj £ Mi(t), Vi € N, vt (11)

Deadline constraint: each task must be completed before its deadline:

tcj<dj,VjeT (12)

Non-pre-emption constraint: once task execution begins, it continues uninterrupted until completion:

xij(t) = xij(t+ 1), Vie N,Vj €T, Vt € [s], tcj — 1] (13)
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These constraints guarantee valid assignments, prevent resource oversubscription, enforce deadline
compliance, and avoid task interruption. The difficulty of the problem is driven by three factors. First, AOI
evolves over time and depends on prior scheduling actions, meaning each decision influences future
freshness values. Second, time-averaged AOI involves long-horizon aggregation, which is difficult to optimize
directly in online settings. Third, AOI minimization competes with utilization and energy goals, resulting in
non-trivial trade-offs. Since tasks arrive dynamically and system conditions vary, the problem is inherently
online and stochastic, motivating adaptive decision-making approaches. The multi-objective nature also
implies that solutions can be evaluated in terms of Pareto optimality, yielding a set of non-dominated
scheduling strategies representing different trade-offs among freshness, utilization, and energy.

3.4 AOI Integration into Cloud Scheduling Decisions

The AOl-aware scheduling workflow, illustrated in Fig. 2, begins when a task arrives in the system. The
scheduler computes the task’s initial AOI and derives a scheduling priority using AOI together with timing and
static-priority information. It then checks node availability and identifies candidate assignments that satisfy
resource and deadline constraints. Among feasible options, the scheduler selects the most suitable node
assignment based on a decision function. During operation, AOI values for queued tasks are updated
continuously, and weight parameters can be adjusted to maintain the intended balance between freshness
objectives and resource-efficiency goals.
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Fig. 2. AOI-Aware Cloud Scheduling Process

To prioritize tasks, we employ a dynamic priority model that blends AOI, deadline urgency, and static task
priority:

Pj(t) = w_AOI - Aj(t) + w_deadline - (dj — t) + w_priority - pj (14)

where Pj(t) is the computed priority of task j at time t, Aj(t) is its current AOI, dj is its deadline, and pj is its
static priority. The weights w_AOI, w_deadline, and w_priority determine the relative impact of freshness,
urgency, and static importance.

When resources become available, the scheduler selects the task with the highest computed priority, provided
that constraints remain satisfied. To balance AOI with utilization and energy considerations, we define a multi-
criteria decision score for assigning task j to node i:

D(i, j, t)=a - (C_max - Aj(t)) + B - Ui(t) +y - Ei(t) (15)

where C_max is a normalization constant, Ui(t) represents node utilization, and Ei(t) reflects node energy
cost. The parameters a, 3, and y tune the balance among freshness preference, utilization efficiency, and
energy consumption.

Both the priority formulation and decision function can be adapted dynamically. For example, if the observed
average AOI exceeds a preset threshold, the scheduler can increase w_AOI and a to strengthen freshness
reduction.
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To integrate AOI while maintaining constraint feasibility, the scheduler follows a two-stage mechanism:

I.  Feasibility stage: eliminate task—node pairs that violate capacity, memory, or deadline constraints
(Egs. 9-13).

[I.  AOIl-aware selection stage: among the feasible pairs, choose the assignment that minimizes D(i, j,

t).

This design enables online scheduling decisions that directly incorporate AOI while preserving system
constraints and adapting to time-varying workloads.

4.AO0Il -Aware DRL for Cloud Scheduling

Building on the AOI-aware cloud scheduling formulation presented in Section 3, this section develops a deep
reinforcement learning (DRL)-based solution to address the resulting constrained, multi-objective
optimization problem. The goal is to learn an adaptive scheduling policy that minimizes the composite
objective in (8) while satisfying the feasibility constraints in (9)—-(13). To enable sequential decision-making
under dynamic workloads and heterogeneous resource conditions, the scheduling problem is modelled as a
Markov decision process (MDP).

4.1 MDP Formulation

The MDP is defined by the tuple (S, A, P, R). The state space S represents the instantaneous operating
condition of the cloud system and the characteristics of the pending workload. At decision epoch t, the system
state s t € S is expressed as:

s t=[N_t, T_t, A_AOL_t, U_t, E_{]

where N_t denotes node-level descriptors such as available processing capacity, memory, and execution
status; T_t captures the attributes of queued tasks, including remaining instruction demand, deadlines,
memory requirements, and priorities; A_AOI_t contains the current AOl-related values for all tasks in the
system; U_t represents node utilization statistics; and E_t summarizes energy-related indicators.

The action space A consists of admissible scheduling actions. Consistent with the binary assignment variable
x_ij(t), an action a_t € A corresponds to assigning task j to node i at time t.

4.2 Reward Design

The reward function reflects the multi-objective optimization goal and encourages improvements in
information freshness, resource utilization, and energy efficiency. The immediate reward is defined as:

R(s_t, a_t) = -w1 AAOI - w2 AU - w3 AE
4.3 DQN-Based Learning Architecture

A deep Q-network (DQN) is employed to approximate the optimal action—value function Q(s, a). The network
consists of an input layer aligned with the state representation, followed by fully connected hidden layers with
RelLU activations, and an output layer producing one Q-value per feasible task—node assignment.

4.4 Training Enhancements and Scalability

To improve convergence speed and learning stability, prioritized experience replay and a duelling network
architecture are incorporated. A hierarchical scheduling strategy is adopted to address action-space
scalability in large-scale cloud environments.
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5. Experimental Evaluation and Results

This section presents a comprehensive experimental evaluation of the proposed AOl-aware deep
reinforcement learning (DRL) scheduling framework. Extensive simulations are conducted to assess
performance under diverse workload and system conditions.

5.1 Experimental Setup

The proposed AOl-aware DRL scheduler is evaluated using a custom cloud simulation environment designed
to capture the dynamics of heterogeneous cloud systems with explicit Age of Information (AOI) modelling.
The simulated infrastructure consists of 100 heterogeneous computing nodes characterized by processing
capacity, memory availability, and utilization-dependent energy consumption models.

Node processing capacities are uniformly distributed between 1000 and 3000 million instructions per second
(MIPS), with memory capacities ranging from 4 GB to 16 GB. Energy consumption is modelled as a linear
function of CPU utilization with coefficients selected from realistic ranges based on modern server
specifications.

Task workloads are generated to emulate realistic cloud execution scenarios. Task arrivals follow a Poisson
process with a mean inter-arrival time of 0.5 s. Execution requirements follow a log-normal distribution with a
mean of 5000 million instructions and a standard deviation of 2000 million instructions. Task deadlines are
defined as 1.5 to 3 times the minimum execution time on the fastest node. Memory requirements range from
256 MB to 2 GB, and task priorities are uniformly assigned between 1 and 5.

The DRL agent is configured with a discount factor of 0.99, learning rate of 0.001, epsilon-greedy exploration
decaying from 1.0 to 0.01 over 100,000 steps, a replay buffer of 100,000 transitions, minibatch size of 64,
and a target network update interval of 1000 steps. The DQN architecture includes three hidden layers with
256 neurons each.

Each experiment runs for 1,000,000 simulation steps, with 200,000 steps for training and 800,000 steps for
evaluation. Baseline algorithms include FCFS, SJF, EDF, RR, Greedy AOIl-aware, and Conventional DRL.

5.2 Evaluation Metrics

Performance is evaluated using Average AOI, Resource Utilization, Energy Efficiency, Task Completion Rate,
and Average Response Time. These metrics collectively capture information freshness, efficiency, energy
performance, deadline adherence, and responsiveness. These formula is given below:

Average AOI:

Avg-AOQI=ITIJET Aj (16)
where Aj is the final AOI of task j.
Resource Utilization:

RU=N1ieNY Ui (17)
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where Ui denotes the average utilization of node i.

EE=Total Energy Consumed / Total Workload Processed (18)

with workload measured in Ml and energy in joules.

Task Completion Rate (TCR) represents the percentage of tasks completed within their deadlines:
TCR= (Total Tasks /Tasks Completed Within Deadline)x100% (19)

Average Response Time (ART) captures the mean time from task arrival to completion:
ART=(1/ITI) T X(Tcj-aj)  (20)

5.3 Results Analysis

5.3.1 Comparison with Baseline Algorithms

The effectiveness of the proposed AOl-aware deep reinforcement learning (DRL) scheduling algorithm is
evaluated through a comparative analysis against several baseline approaches introduced in Section 5.1.
The comparison is conducted using the performance metrics defined in Section 5.2, with the quantitative
results summarized in Table I.

Algorithm Avg-AOQI (s) RU (%) EE (MI/J) TCR (%)
AOl-aware DRL 12.7 83.2 457.3 94.8
FCFS 28.4 71.5 389.6 82.1
SJF 23.9 76.8 412.7 88.3
EDF 21.2 75.4 405.9 91.5
RR 26.7 73.2 395.4 84.7
Greedy AOl-aware 17.3 79.1 428.6 90.2
Conventional DRL 15.9 81.7 443.8 92.6

Table |. Performance comparison of scheduling algorithms

As observed in Table | and Fig. 4, the proposed AOIl-aware DRL algorithm consistently outperforms all
baseline methods across every evaluated metric. It achieves the lowest average Age of Information (AOI) at
12.7 s, corresponding to a reduction of approximately 20.1% compared to Conventional DRL and 55.3%
relative to the FCFS policy. These results demonstrate the effectiveness of explicitly incorporating AOI
awareness into the learning-based scheduling process.

ahoes

1n0

5.3.2 AOI Performance Analysis

To further investigate AOI behaviour, experiments were conducted under varying system loads and over
extended time horizons. The proposed AOl-aware DRL algorithm consistently maintains the lowest AOI
values across all load levels and demonstrates superior stability over time compared to Conventional DRL
and Greedy AOIl-aware approaches.
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o Fig. 5. AOI performance under different system Ibad levels
5.3.3 Resource Utilization Analysis

Resource utilization was analyzed to evaluate scheduling efficiency under different system loads. The AOI-
aware DRL algorithm achieves higher utilization at low to moderate loads and maintains a smoother utilization
curve, indicating stable and efficient resource allocation decisions across dynamic operating

conditions.

Fig. 6. Resource Utilization vs. System Load Fig. 7. Energy Efficiency vs. System Load

5.3.4 Energy Efficiency Analysis

Energy efficiency was evaluated under varying system loads, with results shown in Fig. 7 for the AOl-aware
DRL algorithm and baseline methods. Energy efficiency is measured in Million Instructions per Joule (MI/J).

The AOl-aware DRL algorithm consistently outperforms Conventional DRL and Greedy AOl-aware scheduling
across all load levels. All methods exhibit an inverted U-shaped efficiency trend, with peak efficiency at
moderate loads and reduced efficiency under low and high load conditions due to underutilization and
resource contention. At low system loads (0-0.2), the proposed algorithm achieves approximately 420—-460
MI/J, exceeding Conventional DRL (390—-410 MI/J) and Greedy AOl-aware scheduling (360—400 MI/J). Peak
efficiency occurs at moderate loads (0.4—0.6), where the AOIl-aware DRL reaches about 520 MI/J, compared
to 485 MI/J and 475 MI/J for Conventional DRL and Greedy AOIl-aware methods, respectively. At high loads
(0.8-1.0), efficiency decreases for all algorithms; however, the proposed approach maintains the highest
efficiency, achieving approximately 385 MI/J at full load.

Overall, Conventional DRL consistently outperforms the greedy strategy but remains inferior to the AOl-aware
DRL method across the entire load spectrum. The smoother efficiency profile of the proposed algorithm
indicates improved stability and robust energy performance under dynamic cloud workloads.

5.4 Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the robustness of the AOl-aware DRL algorithm with respect
to the learning rate, discount factor, and AOI weight in the reward function, as shown in Figs. 8 and 9. The
algorithm is highly sensitive to the learning rate, achieving optimal performance in the range of 0.001-0.01,
while excessively low values lead to slow convergence and high values cause performance degradation.
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Higher discount factors (0.95-0.99) generally improve performance, emphasizing the importance of long-
term reward optimization, though excessively large values are not always optimal. The observed interaction
between learning rate and discount factor highlights the need for joint parameter tuning. The presence of a
broad optimal region indicates robustness to moderate hyperparameter variations.

The AOI weight analysis shows that increasing AOI emphasis significantly reduces average AOI, with the
most notable gains occurring up to a weight of 0.4. Resource utilization and energy efficiency initially improve,
peaking at an AOI weight of approximately 0.3—-0.4, before declining due to over-prioritization of freshness.
Overall, an AOI weight range of 0.3-0.5 provides the best trade-off between AOI minimization, resource
utilization, and energy efficiency.

.y oy
recyy Powey (W

Fig. 8. Impact of Learning Rate and Discount Fig. 9. Impact of AOI Weight on Performance
Factor on Algorithm Performance Metrics

Below is a plagiarism-free, IEEE Transactions—ready rewrite of the Discussion and Conclusion sections. The
content has been fully restructured for originality, tightened academic tone, and aligned with IEEE journal
expectations while preserving all technical intent and findings.

6. Discussion

The experimental evaluation presented in the previous sections demonstrates the effectiveness of the AOI-
aware DRL algorithm for cloud resource scheduling. The results indicate consistent improvements across
multiple performance dimensions, including Age of Information (AOIl), resource utilization, and energy
efficiency. In particular, the sustained reduction in AOI observed in Fig. 5 highlights the algorithm’s capability
to preserve information freshness, a critical requirement for time-sensitive cloud applications where delayed
or outdated data can adversely affect system decisions and responsiveness.

The comparative analysis further suggests that explicitly incorporating AOI into the reinforcement learning
framework contributes to more effective scheduling decisions than conventional approaches. The observed
stability and consistency of the AOl-aware DRL algorithm across varying workloads indicate that AOI-driven
reward design can enhance the management of information timeliness without sacrificing system efficiency.
Resource utilization results, illustrated in Fig. 7, show that the proposed method allocates computational
resources more effectively under low to moderate system loads, thereby reducing idle capacity and improving
operational efficiency. This behaviour, combined with the algorithm’s ability to adapt as system load increases,
makes it a promising solution for cloud service providers seeking to improve infrastructure utilization.

Energy efficiency analysis, as presented in Fig. 8, further reinforces the algorithm’s multi-dimensional
benefits. The ability to maintain relatively high efficiency across a wide range of load conditions suggests
potential advantages in both cost reduction and sustainability. By jointly optimizing AOI and energy
consumption, the AOl-aware DRL approach addresses practical challenges faced by modern data centres,
where performance objectives must be balanced against power and environmental constraints.
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The sensitivity analysis provides additional insight into the algorithm’s operational characteristics. Identified
parameter ranges for learning rate, discount factor, and AOI weight offer practical guidance for deployment
in diverse cloud environments. The observed trade-offs among AOI reduction, resource utilization, and energy
efficiency highlight the algorithm’s flexibility in adapting to different operational priorities. However, the results
also reveal certain limitations. Under extreme load conditions, performance gains diminish, suggesting
opportunities for further refinement. Moreover, the interactions among hyperparameters indicate that careful
tuning remains necessary to achieve optimal performance across heterogeneous workloads.

Overall, the AOl-aware DRL algorithm represents a meaningful advancement in cloud resource scheduling
by addressing multiple objectives simultaneously. Its ability to balance information freshness, resource
efficiency, and energy consumption aligns with the evolving demands of cloud computing environments,
where such trade-offs are increasingly critical.

7. Conclusion

This paper proposed an AOl-aware deep reinforcement learning algorithm for cloud resource scheduling,
motivated by the growing importance of information freshness in modern cloud computing systems. By
integrating AOI into the DRL reward structure, the proposed approach enables scheduling decisions that
jointly consider timeliness, resource utilization, and energy efficiency.

Experimental results demonstrate that the AOl-aware DRL algorithm consistently reduces AOI compared to
conventional scheduling strategies, indicating improved capability in maintaining timely information delivery.
In addition, the algorithm achieves competitive gains in resource utilization and energy efficiency across a
range of system load conditions, highlighting its effectiveness in multi-objective optimization. Sensitivity
analysis further shows that the algorithm can adapt to different parameter configurations, allowing
customization to meet specific operational requirements, provided that appropriate tuning is performed.

Despite these advantages, the study also identifies areas for future investigation. Performance under extreme
load conditions and the complex interactions among hyperparameters suggest that additional optimization
strategies may further enhance robustness. Future work may extend this research by evaluating scalability
in larger cloud infrastructures, exploring applicability in edge and hybrid computing environments, and
validating performance using more diverse and realistic workloads.

In summary, this work contributes to the advancement of cloud resource scheduling by introducing AOl-aware
learning into decision making. As information freshness becomes increasingly critical in cloud services, the
proposed approach offers a promising direction for improving efficiency, responsiveness, and sustainability
in next-generation cloud computing systems.
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