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Abstract 

Energy-harvesting Wireless Sensor Networks (WSNs) have emerged as a sustainable solution for long-term 

monitoring applications such as environmental surveillance, disaster management, healthcare monitoring, and 

intelligent transportation systems. By harvesting energy from renewable sources including solar, radio frequency 

(RF), vibration, and thermal gradients, these networks aim to overcome the inherent limitations of battery-

powered sensor nodes. However, the stochastic and intermittent nature of harvested energy introduces significant 

challenges in task scheduling, routing, and real-time decision making. 

Mobile agents provide an efficient paradigm for in-network processing and distributed intelligence by reducing 

communication overhead and enabling localized computation. Nevertheless, existing mobile agent–based 

approaches predominantly rely on static or rule-based decision mechanisms, which are ineffective in highly 

dynamic energy-harvesting environments. Such approaches often lead to inefficient agent migration, increased 

decision latency, task failures, and reduced network lifetime. 

This paper proposes an AI-driven adaptive mobile agent framework for energy-harvesting WSNs that enables 

energy-aware scheduling and real-time decision making. The proposed framework integrates a lightweight 

artificial intelligence model for short-term energy prediction and employs reinforcement learning–based adaptive 

scheduling to dynamically adjust agent behaviour. Extensive NS-3–based simulations demonstrate that the 

proposed approach significantly improves decision latency, task success ratio, energy efficiency, and network 

lifetime compared to conventional static and rule-based mobile agent systems. 
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I. Introduction 

1.1 Background of Wireless Sensor NetworksWSNs are one of the most important technological paradigms of 

modern distributed sensing and monitoring systems. A WSN constitutes a significant concentration of low-cost, 

miniature, and energy-limited sensor nodes that are densely distributed in a given geographical area, to monitor 

and measure various physical, chemical, and environmental characteristics. These parameters normally include, 

temperature, humidity, pressure, luminous intensity, vibration, acoustic signals and motion based on the specific 

area of application. The sensor nodes are made of several function-based subsystems; sensing units, local data 

processing in the form of a microcontroller, limited onboard memory, wireless transceiver, and the provision of 

finite energy typically achieved by a small battery. 

Sensor nodes in a WSN work in a distributed and cooperative mode where every individual node will acquire 

and process environmental data on its own and co-operate with the neighboring node to pass on the data collected 

to the singular central control point called sink node or base station. The communication in the network can either 

be a direct one or through multi-hop routing depending on the distance between the nodes, the power limit of the 

transmission and the topology of the network. The sink node acts as a gateway and consolidates the information 

that has been gathered and forwards it to other external networks, cloud server or data center where it is further 

processed, stored, visualized and decision made. The architecture allows WSNs to operate independently, with 

little human interference, as well as provide scalability in monitoring over large and even inaccessible areas. 

This ability to work in difficult, distant, or adverse conditions is one of the most distinguishable factors of WSNs 

since traditional wired monitoring systems are either unfeasible or prohibitively costly. Scalability, fault 

tolerance, self-organization, and ease of deployment among compromises have resulted in extensive use in 

various applications. WSNs have been used in environmental monitoring in forest fire detection, pollution 

monitoring, forecasting floods, seismic activity, as well as collecting climate data. They serve important roles in 

battlefield monitoring and reconnaissance, intrusion detection, monitoring the border and tracking the targets 

under unfriendly conditions in the military and defense setting. On the same note, in smart agriculture, the WSNs 

allow monitoring the soil moisture, crop health condition, pest presence or absence, and accurate irrigation, 

among other functions, and lead to an increase in productivity and the sustainable use of resources. 

Reasoning in the framework of industrial automation and intelligent manufacturing, the WSNs are used in 

equipment health surveillance, fault detection, predictive maintenance, and process optimization. These networks 

decrease downtimes, enhance safety, as well as, operational effectiveness. Additionally, the WSNs have 

accumulated a lot of relevance in the healthcare systems, wherein, they said the patient monitoring and wearable 

health devices, rehabilitation systems, and assisted living environments. In these applications, sensor nodes are 

used to continuously measure physiological values like the heart beat rate, body temperature, and motion pattern 

and thus provide vital data to analyze the medical conditions and emergency application. 

Although they imply a wide range of applications, and have many benefits of their own, traditional WSNs are 

effectively limited by a number of limitations, the most critical and challenging of which is energy efficiency. 

Sensor’s nodes usually have small and powerless batteries, which in most cases, are non-rechargeable. The 

limited nature of the energy reserves when it comes to a node implies that once the node runs off its energy 

reserves, the node will be inactive and will no longer be able to engage in sensing or communication processes. 

This energy consumption trigger node failures that can be the cause of coverage holes, greater routing load on 

neighboring nodes and finally partitioning of the network. The worse the count of failed nodes, the lower the 

reliability levels and quality of the sensed data. 

WSNs are controlled mainly by wireless communication processes, especially data transmission and reception, 

when it comes to energy consumption. Often data transmission, packet retransmission and ineffective routing 

protocol may quickly exhaust node energy. Moreover, sensor nodes nearer to the sink node tend to undergo a 

disproportionate or skewed energy usage as they are repeatedly used as relay nodes to pass information which is 

generated by more distant nodes. Such imbalance leads to premature failure of critical nodes and greatly shortens 

the lifetime of the network as a whole. 
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In a range of deployment situations, such as forested areas, subterranean or underground, disaster recovery, and 

even maritime, replacement or reenergizing power sources is often not an option, either because of a technical 

limit, or based on the cost, or operational hazard. This has resulted in increasing the lifetime of networks by 

energy-conscious system design as a fundamental research goal in the area of WSNs. The researchers have 

studied various strategies, such as use of energy-efficient routing protocols, data aggregation/ fusion techniques, 

duty cycling, topology control and using clustering mechanisms. 

Such advanced techniques as mobile agent-based data aggregation, adaptive routing schemes and intelligent 

optimization algorithms have in recent years been the subject of interest in potential solutions to the power 

constraints of the conventional WSN architectures. The objective of these techniques is to cut down on 

unnecessary communication, condition energy use across the nodes and improve network resilience. Therefore, 

the development of scalable, intelligent and efficient energy saving of WSN structures remains a dynamic and an 

extremely important research topic motivated by the growing need of the sustainable and long-term monitoring 

systems in the future smart environment. 

1.2 Mobile Agents in WSNs 

Mobile agents are independent software objects that have the ability to move through the network nodes with the 

ability to carry code along with state of execution simultaneously. In WSNs, mobile agents are employed for 

tasks such as data aggregation, event detection, local processing, and decision making. By performing 

computation close to data sources, mobile agents significantly reduce communication overhead and improve 

scalability. 

However, the effectiveness of mobile agents strongly depends on their decision-making capability. Static or rule-

based mobile agents are unable to adapt to dynamic network conditions, particularly in energy-harvesting 

environments. 

1.3 Energy-Harvesting Sensor Networks 

Energy-Harvesting Wireless Sensor Networks (EHSNs) exemplify a radical improvement on traditional Wireless 

Sensor Networks (WSNs) developed to overcome the limitations of a limited budget through allowing sensor 

nodes to tap into renewable environmental sources. The key sources of sources of harvested energy include solar 

radiation, surrounding radio-frequency (RF) emissions, mechanical vibrations, wind and thermal gradients. This 

conversion of ambient energy to electrical energy allows energy-harvesting server nodes to partially or fully 

recharge their own power supplies, significantly increasing the lifetime of the network and in some cases allowing 

such a network to operate to what is effectively permanent. 

The inclusion of harvesting features makes WSNs more acceptable to long-period and large-scale applications 

especially in inaccessible or dangerous smaller locations where battery replacement or manual maintenance is 

not feasible. Environmental monitoring, smart city infrastructures, structural health assessment, and industrial 

sensing are some of the applications that gain a lot of advantage in using harvesting techniques due to less 

spending in their operations and more sustainability of the system. 

Despite the favourable prospects, energy harvesting is associated with new technical issues. The amount of energy 

accrued to a particular sensor node is highly varied and unpredictable, and depends on some environmental factors 

(e.g., weather, day/night cycle, season), the location of a sensor node, and in the electromagnetic activity around 

a sensor node. Indicatively, solar powered nodes can obtain abundant energy during light periods but come face 

to face with low supplies during dark periods or stormy weather like RF harvesting capability is dependent on 

the availability and strength of signal producers within the range. 

Such intrinsic variability of energy harvested generates high hurdles on energy control and energy network 

functioning. To prevent depletion, the nodes are required to strategically equalize between consumption and 

availability to maintain an acceptable level of performance. Task scheduling, data acquisition frequencies and 

communication intervals as well as routing decisions should be dynamically re-calibrated based on the existing 
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and predicted energy conditions. Furthermore, ensuring real-time responsiveness will be complicated as the 

supply becomes wildly fluctuated, the freshness of data, latency, and overall quality of service (QoS) may get 

violated. 

Therefore, very strong predictive energy models, dynamic resource allocation models, intelligent control models 

are all critical elements of energy-harvesting sensor networks. These approaches aim at making the use of energy 

that has been harvested as effective as possible, achieving energy-neutral operation, and ensuring reliable network 

operation in the face of uncertain and dynamic nature of renewable energy substrates. 

1.4 Motivation and Objectives 

The motivation of this research is to overcome the limitations of static mobile agent systems in energy-

harvesting WSNs. The objectives are: 

 To analyse the impact of energy uncertainty on mobile agent behaviour 

 To design an AI-driven adaptive mobile agent framework 

 To enable energy-aware scheduling and routing 

 To reduce real-time decision latency 

 To improve network lifetime and task success ratio 

II. Problem Formulation and Research Challenges 

Energy-harvesting WSNs exhibit dynamic energy uncertainty, making it difficult for mobile agents to plan 

movement and task execution reliably. Rule-based decision mechanisms fail to respond effectively to rapid 

energy fluctuations, resulting in delayed decisions and task failures. Moreover, static scheduling and routing 

strategies are inefficient in dynamic environments, leading to excessive agent migration and increased energy 

consumption. 

Problem Statement: 
Mobile agents in energy-harvesting WSNs fail to achieve reliable real-time decision making and efficient task 

execution due to unpredictable energy availability, static decision logic, and inefficient scheduling strategies. 

III. Literature Review 

Existing studies on energy-harvesting WSNs focus primarily on duty cycling, routing, and power management 

but ignore mobile agent intelligence. Research on mobile agents demonstrates reduced communication overhead 

but assumes stable energy availability. Artificial intelligence techniques have been applied for routing and 

anomaly detection; however, these solutions are often centralized and computationally expensive. The literature 

lacks an integrated framework combining AI-driven intelligence, mobile agents, and energy harvesting, 

highlighting a clear research gap. 

IV. Proposed AI-Driven Adaptive Mobile Agent Framework 

The proposed framework consists of: 

 Energy-harvesting sensor nodes 

 Mobile agent platform 

 AI-based energy prediction module 

 Adaptive decision-making engine 

 Reinforcement learning–based scheduling and routing 

Mobile agents dynamically adapt their movement and execution strategies based on predicted energy 

availability and task urgency. 
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V. Methodology 

5.1 Energy Harvesting Model 

 

Ei (t+1) = Ei (t) + Hi (t) + Ci (t) 

Where: 

 Ei (t) = residual energy of node i at time t 

 Hi (t) = harvested energy during time interval t 

 Ci (t) = energy consumption due to sensing, processing, communication, and agent 

execution 

 

5.2 AI-Based Energy Prediction 

 

Êi (t+1) = f(Ei(t), Hi(t-1), T(t), θ) 

Where: 

 Êi (t+1) = predicted energy 

 T(t) = time-related features (time of day, interval) 

  θ = learned model parameters 

5.3 Performance Evaluation Metrics 

The following metrics are used to test the hypotheses: 

Decision Latency 

 

 

 

 

 

 

 

 

 

 

Where ( dk ) is the distance traveled per move. 
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5.4 Mobile Agent Decision Model 

Each mobile agent decides its next action based on predicted energy and task priority. 

Decision Objective Function 

 

 

 

 

Where: 

 Pi = task priority at node i 

 Di = distance or movement cost 

 ω1, ω2, ω3 = weighting coefficients 

The agent selects the node that maximizes this utility function. 

 

5.5 Reinforcement Learning–Based Adaptive Scheduling 

The scheduling problem is modeled as a Markov Decision Process (MDP). 

State Space (S) 
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VI. Dataset Description 

 Energy Harvesting 

Dataset: Solar energy datasets from the UCI Machine Learning Repository 

 WSN Dataset: Intel Berkeley Research Lab Dataset 

 Simulation Dataset: NS-3–generated synthetic datasets 

All datasets are open-access and ethically compliant. 
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VII. Experimental Setup 

Simulations are conducted using the NS-3 network simulator with a deployment of 100 sensor nodes randomly 

distributed over the sensing area. Each node is equipped with energy-harvesting capabilities and follows realistic 

energy consumption and communication models. The simulation environment is configured to reflect dynamic 

energy conditions, including fluctuating energy harvesting rates and variable network traffic. 

The performance of the proposed framework is evaluated using multiple key metrics, including decision latency, 

task success ratio, energy efficiency, agent movement cost, and overall network lifetime. These metrics 

collectively assess the effectiveness, adaptability, and sustainability of the system under dynamic operating 

conditions.  

To demonstrate the benefits of the proposed approach, the results are compared with traditional static mobile 

agent systems and conventional rule-based mobile agent frameworks, highlighting the improvements achieved 

through AI-driven adaptive decision-making. 

VIII. Results and Discussion 

Simulation results show: 

 30% reduction in decision latency 

 25% improvement in network lifetime 

 Higher task success ratio 

 Reduced agent migration overhead 

Performance 

Metric 

Static 

Mobile 

Agent 

Rule-Based 

Mobile 

Agent 

Proposed AI-

Driven Adaptive 

Agent 

Performance 

Gain 

Decision Latency 

(ms) 

120 105 84 30% reduction 

Network Lifetime 

(Rounds) 

820 910 1140 25% 

improvement 

Task Success Ratio 

(%) 

78.2 84.5 92.3 ≈ 18% 

increase 

Agent Migration 

Overhead (Moves) 

520 460 350 ≈ 33% 

reduction 
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Energy Efficiency 

(%) 

68.4 74.1 86.7 ≈ 17% 

increase 

 

 

 

 

 

 

 

 

 

 

 

These results confirm the effectiveness of AI-driven adaptive mobile agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and Future Work 

The present paper presents a description of an adaptive mobile agent framework (based on artificial intelligence) 

that is specifically designed to operate on energy-harvesting wireless sensor networks (WSNs). The proposed 

framework effectively combines energy prediction mechanisms with reinforcement learning–based scheduling to 

address the challenges arising from dynamic and unpredictable energy availability. By enabling intelligent and 

autonomous decision-making, the system adapts sensing, communication, and task execution strategies in real 

time according to the current and anticipated energy conditions of sensor nodes. As a result, the proposed 

approach enhances energy utilization efficiency, improves network stability, and prolongs overall network 

lifetime while maintaining acceptable performance and responsiveness. 
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The integration of artificial intelligence allows the mobile agents to learn from environmental feedback and 

operational history, leading to progressively optimized scheduling and resource management decisions. This 

adaptive behavior is particularly beneficial in energy-harvesting environments, where traditional static or rule-

based approaches fail to cope with fluctuating energy inputs. The experimental evaluation demonstrates that the 

AI-driven framework can significantly reduce energy wastage, prevent frequent node failures, and support 

sustainable network operation under varying environmental conditions. 
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