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Abstract :  The octree is a hierarchical tree data structure commonly employed in computer graphics, 

spatial indexing, and three-dimensional data representation. Traditional octree methodologies generally 

categorise regions as black (completely shaded), white (unshaded), or grey (partially shaded), aligning with 

a binary (0–1) logic, with the intermediate state managed in an ad hoc manner. This article extends binary 

logic to a three-valued logic octree, facilitating a more nuanced and systematic depiction of spatial 

uncertainty. We present a neutrosophic quadtree framework that extends the traditional quadtree by 

explicitly representing the components of truth, indeterminacy, and falsity for each node, in accordance with 

neutrosophic set theory. We propose a consolidated methodology for expressing imprecise spatial data by 

integrating these two approaches, wherein each node conveys either three-valued (true, false, intermediate) 

or neutrosophic (T, I, F) information. Additionally, we illustrate how both structures can be represented and 

examined using rough matrices, employing the concepts of lower, higher, and boundary approximations to 

measure certainty and indeterminacy inside hierarchical divisions. This comprehensive perspective 

amplifies the descriptive capability of tree-based spatial models and paves the way for advancements in 

image reconstruction, feature extraction, and uncertainty management in multidimensional datasets.   

Keywords: Rough sets, Rough membership function , Rough Approximations,  Information Systems, Rough 

matrices, quadrough matrix, octroughmatrix, neutrosophic sets. 

 - Introduction 

 The Challenge of Vagueness in Spatial Data Representation in real-world spatial data, encompassing 

diverse domains from medical imaging to environmental scans and point clouds, frequently exhibits 

inherent vagueness, imprecision, and incompleteness. Traditional set theory, which relies on a binary 
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classification where an element is either definitively a member or not, proves inadequate for accurately 

representing such uncertainties. This limitation becomes particularly apparent when dealing with blurred 

object edges in images, ill-defined geological boundaries, or noisy sensor readings in three-dimensional 

(3D) environments. 

To address these challenges, Rough Set Theory (RST), introduced by Z. Pawlak in 1982, offers a 

robust mathematical framework specifically designed to handle vagueness and incompleteness without 

necessitating probabilistic assumptions. RST achieves this by defining sets not through precise boundaries, 

but through their lower and upper approximations. This approach explicitly characterizes a "boundary 

region" for imprecise concepts, comprising elements that cannot be definitively classified as belonging to or 

not belonging to a set.  If this boundary region is empty, the set is considered crisp; otherwise, it is deemed 

rough or inexact.  The fundamental concept of rough sets, centered on indiscernibility and approximation, 

provides a robust theoretical foundation for representing imprecise spatial boundaries. This is crucial 

because spatial data often exhibits inherent fuzziness, making crisp representations insufficient. By 

explicitly modelling a "boundary region" (elements that are neither clearly in nor clearly out), rough sets 

offer a more faithful representation of such real-world spatial phenomena. This capability implies that 

applying rough sets to spatial data structures can capture a richer, more nuanced understanding of spatial 

relationships than traditional binary approaches, directly motivating the development of structures like the 

Quad Rough Matrix (QRM) and, by extension, the proposed Octree Rough Matrix (ORM). 

Hierarchical data structures are indispensable tools for efficiently organizing, accessing, and 

manipulating spatial information. They achieve this efficiency by recursively partitioning space into smaller, 

more manageable regions. Quadtrees, for instance, are two-dimensional (2D) hierarchical structures that 

recursively subdivide a square region into four smaller quadrants.1 They are widely employed in 2D image 

processing, geographic information systems (GIS), and 2D collision detection. Octrees are the natural three-

dimensional counterparts of quadtrees. They recursively subdivide a cubic space into eight octants.3 Both 

quadtrees and octrees are extensively applied in fields such as computer graphics, image processing, GIS, 

and game development for tasks like scene management, collision detection, and spatial querying.2 The 

recursive subdivision nature of both quadtrees and octrees inherently supports a multi-resolution 

representation of spatial data. This structural property aligns seamlessly with the multi-granular nature of 

rough set approximations, where vagueness can be resolved or refined at deeper levels of subdivision. If a 

spatial region's membership is uncertain (i.e., its rough membership value is between 0 and 1), subdividing 

it allows for a more precise determination of its "shaded" (occupied) or "unshaded" (empty) components at a 

finer granularity. This inherent multi-resolution capability of tree structures makes them exceptionally well-

suited for integration with rough set theory to represent and analyze spatial vagueness across different 

scales.  

The remainder of this paper is organized as follows: Section 2 provides preliminaries on rough set 

theory, rough matrices, quadtrees, and a detailed review of QRM. Section 3 introduces the conceptual 

framework for the Octree Rough Matrix (ORM), including adaptations of key QRM components for 3D. 

Section 4 outlines the step-by-step methodology for constructing an ORM. Section 5 discusses potential 

applications, advantages, and limitations. Finally, Section 6 concludes the paper and suggests avenues for 

future research. 

2 .  PRELIMINARIES 

Rough Set Theory (RST), introduced by Z. Pawlak in 1982[1], provides a formal framework for 

dealing with imprecise, incomplete, and vague information without requiring prior knowledge of probability 

distributions. It operates on a universe of objects, U, and an indiscernibility relation, R, which represents our 

inability to distinguish between certain objects based on available attributes. Pawlak assumed that R is an 

equivalence relation, partitioning the universe U into elementary sets called indiscernibility classes. Pawlak 
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[1] developed rough set theory, which demonstrates vagueness not through membership but through the 

boundary region of a set. If a set's boundary region is void, it is termed crisp; otherwise, it is regarded rough 

(imprecise). In 1999, Frege and A.Nakamura [2]  articulated about Conflict Logic with Degrees, Rough 

Fuzzy Hybridization . Pawlak [1] proposed that given a set of objects U, known as the universe, and an 

indiscernible relationship, this represents our ignorance about the elements of U. Pawlak proposed that R 

represents an equivalence relation. Rough set theory is a novel mathematical approach to analysing incorrect 

information. The framework has been applied in a variety of sectors, including decision support, 

engineering, environmental research, banking, medicine, and others. We can establish the rough set concept 

by applying topological operations such as interior and closure.  

Yiyu Yao [3] published an article in 2010 regarding rough set approximations and their associated 

measures. The study advances fundamental knowledge in rough set theory—elucidating the methods for 

defining and measuring approximations to facilitate tasks such as rule induction, decision analysis, and 

knowledge discovery. In 1984, Hanan Samet published an article [4] on quadtrees, stating that a quadtree is 

a tree data structure formed by breaking the original parent node into four child nodes. Each node has four 

children. The divided region can be any shape, such as a square, rectangle, or another shape. A quadtree is a 

data organisation approach that starts with a single square and then divides it into four smaller squares. A 

quadtree is a hierarchical data structure that operates by regularly dividing space into smaller chunks. There 

are numerous approaches for grouping them. (i) Data presentation style (ii) Breakdown concept. (iii) The 

resolution, which is changeable or not. Recent studies emphasise the increasing amalgamation of rough set 

theory, multi-criteria decision-making (MCDM) methodologies, and neutrosophic algebraic frameworks to 

tackle uncertainty and indeterminacy in intricate decision-making scenarios.  

Vijayabalaji and Balaji [10] proposed a practical rough-MCDM framework combined with an 

assignment model to discover the Best'11 strategy in cricket, illustrating the efficiency of rough matrices in 

dealing with imprecise and conflicting performance criteria under multi-attribute evaluation. From a 

theoretical standpoint, Sivaramakrishnan, Vijayabalaji, and Balaji [11] expanded neutrosophic theory by 

developing interval-valued anti-fuzzy linear spaces, which provide a generalised algebraic structure capable 

of modelling truth, indeterminacy, and falsity in one framework. Sivaramakrishnan et al. [12] expanded on 

this line of research by developing interval-valued neutrosophic fuzzy M-semigroups, which establish 

critical operational properties that strengthen the mathematical foundation for neutrosophic-based decision 

and optimisation models. Collectively, these investigations show a clear evolution from applied rough-

MCDM models to robust neutrosophic algebraic frameworks, highlighting their appropriateness for 

intelligent decision-support systems operating in unpredictable environments. 

Decision-making under uncertainty remains a major difficulty in modern scientific and engineering 

problems, especially in situations characterised by ambiguity, limited knowledge, and competing criteria. 

Classical mathematical models, which rely on precise numerical data, are frequently insufficient to reflect 

real-world processes that contain ambiguity and indeterminacy. To solve this constraint, soft computing 

paradigms such as fuzzy sets, soft sets, and neutrosophic sets have been extensively developed and utilised 

in a wide range of fields, including environmental management, intelligent systems, and multi-criteria 

decision-making (MCDM).  

Soft set theory, which was developed as a parameterised mathematical framework for dealing with 

uncertainty, has received a lot of attention because of its flexibility and lack of reliance on additional 

assumptions. Based on this basis, Vijayabalaji et al. introduced the notion of sigmoid valued fuzzy soft sets, 

which improve classical fuzzy soft models by introducing sigmoid membership functions to capture smooth 

transitions between membership degrees. This formulation has proven especially useful in environmental 

decision-support applications, such as haze management, where uncertainty grows gradually rather than 

abruptly and decision variables behave nonlinearly [14]. The sigmoid valuation allows for improved 

modelling of threshold-based phenomena and human perception in complicated systems.  

Simultaneously, quantitative comparison of soft parameterised objects has arisen as an essential 

prerequisite for ranking and selection tasks. To this purpose, new distance and similarity measures for soft 
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parameter sets have been created to aid in systematic review and prioritisation in MCDM situations. 

Vijayabalaji et al. proposed unique measures that maintain mathematical consistency while boosting 

discrimination skill among options, hence strengthening decision-making in soft contexts [15]. Such 

measurements play an important role in converting qualitative ambiguity into actionable quantitative 

information. 

Advances in abstract structures such as cubic and n-inner product spaces, which allow generalised 

algebraic and geometric interpretations for uncertainty modelling, also contribute to the mathematical 

robustness of these decision frameworks. The construction of cubic n-inner product spaces provides a 

theoretical foundation for analysing multidimensional interactions among uncertain entities, broadening the 

scope of soft and fuzzy techniques to higher-order analytical contexts [16]. These structures allow for 

consistent aggregation, comparison, and optimisation in complex decision spaces. 

Despite these gains, real-world decision issues frequently entail not only uncertainty, but also 

indeterminacy and inconsistency, which fuzzy and soft frameworks cannot represent adequately. 

Smarandache's neutrosophic theory bridges this gap by explicitly adding truth, indeterminacy, and falsity 

components into set representation [18]. Interval-valued neutrosophic models improve expressiveness by 

allowing for variable boundaries on these components. The research of interval-valued neutrosophic graphs 

shows how effective this approach is at representing uncertain relational structures, especially in networked 

and multi-criteria situations [17]. 

Motivated by these discoveries, this study addresses complicated decision-making scenarios by 

combining fuzzy soft modelling, distance-similarity analysis, and neutrosophic theory. The proposed system 

attempts to provide a more comprehensive and trustworthy decision-support mechanism by combining 

sigmoid valued fuzzy representations, mathematically sound similarity measurements, and neutrosophic 

uncertainty modelling. This integrated method is especially appropriate for engineering, environmental, and 

intelligent system applications involving uncertainty, nonlinearity, and indeterminacy. 

 

Further in this section we recall some basic definitions and results which will be needed for this paper. 

Definition 2.1.[3] 

The set X can be divided according to the basic sets of R, namely a lower approximation and upper 

approximation set. Approximation is used to represent the roughness of the knowledge.  Suppose a set X 

contained in U represents a vague concept, The R-lower and R-upper approximations of X are defined by 

the equations. 

 

 R-lower approximation of X 

𝑅∗(𝑋) =  ⋃{𝑅(𝑥): 𝑅(𝑥) ⊆ 𝑋}

𝑥∈𝑈

 

 R-upper approximation of X   

𝑅∗(𝑋) =  ⋃{𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠ ∅}

𝑥∈𝑈

 

 R-boundary region of X 

𝑅𝑁𝑅(𝑋) = 𝑅∗(𝑋) − 𝑅∗(𝑋)     

  

Also we can define  

 R-positive of X 

𝑃𝑂𝑆𝑅(𝑋) =  𝑅∗(𝑋)  

 R-negative  of X 

 𝑁𝐸𝐺𝑅(𝑋) = 𝑈 − 𝑅∗(𝑋) 
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Rough sets are defined by approximations [1].  

Definition 2.2.[1] 

Rough membership function defined by Pawlak[1] is given by  

𝜇𝑋
𝑅 ∶ 𝑈 → [0,1]  

where   

𝜇𝑋
𝑅 =  

|𝑋 ∩ 𝑅(𝑋)|

|𝑅(𝑋)|
 

and |X| denotes cardinality of X. 

Definition 2.3[2] 

The rough membership function can be used to define approximations and the boundary region of a set by 

Frege and Nakamura [2], as shown below; 

 

𝑅∗(𝑋) = {𝑥 ∈ 𝑢 ∶ 𝜇𝑋
𝑅 = 1 } 

𝑅∗(𝑋) = {𝑥 ∈ 𝑢 ∶ 𝜇𝑋
𝑅 = 0 } 

𝑅𝑁𝑅(𝑋) = {𝑥 ∈ 𝑢 ∶ 0 < 𝜇𝑋
𝑅 < 1 } 

 

Definition 2.4.[4] 

Quadtree is defined as follows. Without loss of generality, assume that the given binary image is a 2n × 2n 

array of unit square “pixels”. If the image does not cover the entire array, then we subdivide the array into 

quadrants, sub-quadrants,………., until we obtain blocks (possibly single pixels) that are entirely contained 

in the region or entirely disjoint from it. 

Definition 2.5.[5] 

The term image is use to refer the original array of pixels. If its elements are either BLACK or WHITE then 

it is said to be binary. If shades of GRAY are possible, then the image is said to be gray-scale image. Two 

pixels are said to be 4 – adjacent if they are adjacent to each other in the horizontal or vertical directions. If 

the concept of adjacency also includes adjacency at a corner (i.e., diagonal adjacencies), then the pixels are 

said to be 8 – adjacent. 

Definition 2.6. [7] 

We can define a Rough matrix as follows  

𝑅𝑀 =  [𝑟𝑖𝑗]𝑚 ×𝑛 = [

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

] 

 where  

𝑟𝑖𝑗 ∈  𝜇𝑋
𝑅 

Definition 2.7.[8] 

Values of Rough Matrix are defined as follows. 

  

𝑅𝑀 =  {

1    ∶ 𝑖𝑓 𝑥 ∈  𝑅∗(𝑋)

(0,1): 𝑖𝑓 𝑥 ∈  𝑅𝑁𝑅(𝑋)

0   ∶ 𝑖𝑓 𝑥 ∈ 𝑈\ 𝑅∗(𝑋)
 

Definition 2.9.[9] 

Let (U, A) be a rough set over any approximations, consider subset of U × A is uniquely defined by  

𝑅𝐴 = {(𝑢, 𝑏): 𝑢 ∈ 𝑅𝐴(𝑏), 𝑏 ∈ 𝐴} 

which is called as indiscernibility relation form    (U, A).  RA    is a function  

∅𝑅𝐴: 𝑈 × 𝐴 → [0,1] 
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 is defined by  

∅𝑅𝐴 =  {

1    ∶ 𝑖𝑓 𝑥 ∈  𝑅∗(𝑋)

(0,1): 𝑖𝑓 𝑥 ∈  𝑅𝑁𝑅(𝑋)

0   ∶ 𝑖𝑓 𝑥 ∈ 𝑈\ 𝑅∗(𝑋)
 

 then 

𝑅𝑀 = ∅𝑅𝐴(𝑢𝑖, 𝑎𝑖) = [𝑟𝑖𝑗]𝑚 ×𝑛 = [

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

]   

is called a m × n rough matrix over approximations.  The set of all m × n rough matrices over 

approximations space will be denoted by  

𝑅𝑀𝑚×𝑛 . 

Definition 2.10. [9] 

Rough sets can be partitioned into three non-empty subsets such that we can visualize completely shaded 

nodes as upper approximations, completely unshaded nodes as lower approximation and nodes in between 

that as boundary region. We can provide the membership value for upper approximation as 1, lower 

approximation as 0, boundary region in between (0, 1). This analogues the structure of rough matrix. If all 

are either 0 or 1, then there is no necessity to subdivide that region further. Let us call that as saturated 

nodes. If the values in between (0, 1) we need to subdivide the region further until we ends with either 0 or 

1. 

 

Definition 2.11. [9] 

The definition of QRM is as follows.  In this set we are defining all the entries of the matrix is either 1, 0 or 

in (0, 1). If all are completely shaded region, then we assign the value 1 for that, which is none other than 

upper approximation. If none is shaded, then we assign the value 0 for that, which is none other than lower 

approximation.  If something is in neither 1 nor 0 then we need to give the membership value according to 

the pixels shaded in that region.  

 

𝑄𝑅𝑀 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑑𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
 

 

2.2  From Rough Matrix to Quad Rough Matrix (QRM) 

The concept of a Rough Matrix (RM) was introduced to provide a structured, algebraic 

representation of rough sets. Its entries are rough membership values, quantifying the degree of membership 

of elements within rough sets.1 Building upon this, Vijayabalaji and Balaji coined the Quad Rough Matrix 

(QRM) specifically to apply rough matrix theory to 2D image data within a quadtree structure. QRM entries 

reflect the "roughness" of image regions, with values of 1 for completely shaded areas (representing the 

upper approximation), 0 for completely unshaded areas (representing the lower approximation of the 

complement), and values in the open interval (0,1) for partially shaded boundary regions.  

The development of QRM signifies a crucial step towards bridging abstract rough set theory with 

concrete spatial data structures. It provides a quantitative measure (a membership value) for the "roughness" 

of image regions, moving beyond qualitative descriptions. By assigning a numerical value (from 0 to 1) to 

each node based on its "shadedness" or density, QRM transforms the qualitative concept of rough 

approximations (lower, upper, boundary regions) into a computable, quantitative metric. This is a significant 

advancement because it allows for algorithmic processing and analysis of vague spatial information, paving 

the way for applications like image compression, segmentation, and feature extraction where traditional 

binary methods might lose critical information or be overly rigid. It provides a concrete, measurable 

representation of uncertainty within spatial data. 
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3. Conceptual framework for the Octree Rough Matrix (ORM ) 

 Motivation for Octree Rough Matrix (ORM) is  increasing volume and complexity of 3D spatial data, 

such as medical scans, 3D models derived from LiDAR, and point clouds, necessitate advanced data 

structures that can effectively represent and process their inherent uncertainties. While QRM successfully 

addresses 2D vagueness, a direct 3D analog is crucial to extend the benefits of rough set theory to 

volumetric data. 

Octrees are explicitly defined as the "three-dimensional analog of quadtrees". Their existing 

applications in 3D graphics, medical imaging, and spatial indexing 5 underscore the critical need for robust 

3D spatial data handling. Traditional spatial data structures, including basic octrees, often struggle to 

efficiently handle tasks in high-dimensional spaces, especially with large numbers of objects or when data is 

noisy or incomplete. Medical imaging, for instance, benefits significantly from octrees for data fidelity and 

compression while preserving 3D content 

This paper proposes the "Octree Rough Matrix" (ORM) as a novel extension, building directly upon 

the principles and calculation methodology of QRM, adapted for the 3D octree structure. As 3D data 

becomes increasingly ubiquitous (e.g., in autonomous vehicles, advanced medical diagnostics, 

virtual/augmented reality, and complex scientific simulations), the ability to represent and process its 

inherent uncertainties becomes paramount. ORM, by integrating rough set theory with octrees, offers a 

novel and theoretically grounded way to handle this. This is not just about scaling up a 2D concept; it is 

about providing a more expressive, computationally efficient, and robust model for 3D data that is often 

inherently noisy, incomplete, or vaguely defined. The broader implication is the potential for ORM to 

become a foundational data structure for next-generation 3D spatial analysis, particularly in fields where 

precise yet flexible representation of spatial occupancy and its uncertainty is critical. This extension aims to 

provide a powerful framework for representing and analyzing vague 3D spatial information, enhancing 

applications in fields where 3D uncertainty is prevalent. 

3.1. Defining the Octree Rough Matrix (ORM) 

The Octree Rough Matrix (ORM) is proposed as a novel data structure designed to represent rough 

approximations of 3D spatial data within an octree framework. It directly extends the principles of the Quad 

Rough Matrix (QRM) to the volumetric domain. Similar to QRM, ORM entries will be values within the 

interval . These values indicate the degree of "occupancy," "density," or "membership" of a given octant 

within the 3D space: 

● A value of 1 signifies an octant that is entirely "occupied" or "shaded" (analogous to the R-lower 

approximation or completely shaded nodes), representing full membership. 

● A value of 0 signifies an octant that is entirely "empty" or "unshaded" (analogous to the R-negative 

region or completely unshaded nodes), representing non-membership. 

● Values between (0,1) signify an octant that is partially "occupied" or "rough" (analogous to the R-

boundary region or "grey" nodes), indicating uncertainty or partial membership within the defined 3D 

concept. 

This definition directly parallels QRM's definition and the broader rough matrix concept [9 & 10], which 

explicitly links rough matrix entries to rough set approximations and the concept of "saturated nodes." The 

ORM, by explicitly representing values in (0,1), moves beyond the traditional "black/white" or 

"occupied/empty" paradigm of octrees. While a traditional octree's "mixed" state simply indicates that 

further subdivision is required, it does not quantify the mixed or uncertain that region is. ORM, by assigning 

a specific numerical value within (0,1), provides a degree of mixedness or uncertainty. This means that even 

at leaf nodes, if they are not entirely full or empty, they can still hold a rough membership value, providing 

richer information than a simple binary classification (e.g., "this voxel is 60% occupied"). This is 

particularly useful for representing objects with ill-defined boundaries, handling noisy sensor data, or for 
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data compression strategies where some loss of crispness is acceptable for memory efficiency, as hinted by 

applications in medical imaging.9 ORM aims to capture the inherent vagueness and imprecision often 

present in 3D objects or regions, providing a more nuanced and informative representation compared to 

traditional binary (occupied/empty) octrees. 

3.2. Adapting the Dense Factor for 3D Octree Subdivisions 

The "dense factor" concept, crucial for normalizing QRM entries in 2D, must be adapted for the 3D 

volumetric context of octrees. Drawing from the QRM's definition of dense factor , which is area-based 

(squared width), the 3D Dense Factor is defined as the smallest individual volume contribution of a 

subdivision to the total volume of the 3D image or spatial domain. 

The proposed formula for the 3D Dense Factor is: 

3𝐷 𝐷𝑒𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = {
𝐸𝑑𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
}

3

 

Here, "Number of Subdivisions in one dimension" is determined by the octree's depth, specifically 2𝑛, 

where 'n' is the number of levels in the octree (similar to 2𝑛 for quadtrees in 1). This ensures the factor 

correctly reflects a volumetric unit. 

For example, consider a 3D image with an edge length of 100 voxels (i.e., a 100x100x100 voxel volume). If 

the octree has 3 levels, the number of subdivisions in one dimension would be 23 = 8. 

3𝐷 𝐷𝑒𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = (
100 

8
)

3

 =  (12.5)3  =  1953.125 

This calculated 3D Dense Factor (1953.125 in this example) represents the individual volume weight 

contribution of a single smallest subdivision unit to the total volume of the 3D image. The cubic nature of 

the 3D Dense Factor (power of 3 instead of 2) is a direct consequence of the dimensional increase. This 

seemingly subtle change has significant implications for how "density" is perceived and normalized in 3D, 

ensuring volumetric consistency and accurate representation of rough membership in a 3D context. The 

dense factor is more than a simple scaling factor; it represents the minimum unit volume that contributes to 

the overall "shadedness" of the 3D object. By multiplying the "number of shaded voxels" within an octant 

by this dense factor, a "raw shaded volume" consistent with the overall image scale is obtained. This "raw 

shaded volume" is then normalized by the Total number of voxels in the region (which is also a volume). 

This two-step normalization process (dense factor for unit volume, then division by current octant's volume) 

ensures that the final ORM value is a consistent, relative measure of "roughness" that can be meaningfully 

compared across different octants and levels of the tree, accurately reflecting the true proportion of occupied 

space within that specific region of the original 3D image. This consistency is paramount for robust and 

interpretable spatial analysis across the hierarchy. In a similar manner we can find the value of each 

elements value in the ORM matrix.  

3.3. Extending Shaded Pixels to Occupied Voxels/Volume 

In the context of QRM, the "Number of shaded pixels"  is a crucial input, representing the count of occupied 

2D units. For ORM, this concept is extended to "Number of shaded voxels" or "Occupied Volume" within a 

given octant. "Shaded" in 3D refers to voxels (volumetric pixels, the 3D equivalent of 2D pixels) that 

represent the object or concept of interest within the 3D space. This count would be obtained from the input 

3D image, point cloud, or volumetric dataset. For instance, in a medical CT scan, "shaded voxels" might 

correspond to tissue types above a certain density threshold. 

The transition from "pixels" to "voxels" is more than just a change in terminology; it implies a fundamental 

shift in the underlying data acquisition, representation, and processing. This highlights the need for ORM to 

handle diverse 3D data formats and the complexities associated with defining "occupancy" in volumetric 

data. Pixels are 2D area units, while voxels are 3D volumetric units. Therefore, for ORM, the "shaded" 

count must refer to the number of occupied voxels within a given octant. This implies that the input data for 
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ORM must be a volumetric representation (e.g., a 3D grid of binary or grayscale voxels, or a point cloud 

that can be voxelized). The concept of "shadedness" now refers to the proportion of the volume within an 

octant that is occupied by the object of interest. This aligns with the idea of rough membership for a 3D 

spatial concept, where the degree of membership is tied to the volumetric density or occupancy rather than 

just area density. This also raises considerations about how "shaded" is determined for non-binary 3D data, 

such as grayscale CT scans, where a thresholding operation might be necessary. 

3.4. Formulating the ORM Entry Calculation 

Based on the adaptations discussed, the refined formula for calculating ORM entries for each octant is 

proposed, directly analogous to the QRM formula 1: 

𝑂𝑅𝑀 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑑𝑒𝑑 𝑣𝑜𝑥𝑒𝑙𝑠 ∗  3𝐷 𝐷𝑒𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
 

The Total number of voxels in the region for an octant at a specific level 'n' (where 'n' is the level of the 

octant, starting from 1 for children of the root) is given by: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 =
 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 3𝐷 𝑖𝑚𝑎𝑔𝑒

23𝑛
 

The calculation process will iterate through each level of the octree, from level 1 up to (n-1), where 'n' is the 

maximum number of levels. The entries for the 8 octants forming a subdivision will be organized based on a 

defined 3D traversal order (e.g., a standard octant numbering convention or Morton order). The consistent 

scaling factor of 23𝑛 for "total number of voxels in the region" is crucial for maintaining the hierarchical 

consistency of rough approximations across different octree levels. This factor precisely accounts for the 

volumetric reduction at each level of subdivision in an octree. If the original 3D image has 𝐿 × 𝐿 × 𝐿 

voxels, and at level n each octant has an edge length of 
𝐿

2𝑛, then its volume is (
𝐿

2𝑛
)

3

= 𝐿^3/(2𝑛)^3 

=L^3/2^3n. This ensures that the Total number of voxels in the region accurately represents the volume of 

the current octant relative to the total image volume. This consistency is paramount for reliable spatial 

analysis, as it guarantees that the rough membership value calculated for any octant, at any level, is a true 

proportional representation of its occupied volume within the overall 3D space, enabling meaningful 

comparisons across the entire octree hierarchy. 

4. Construction Methodology for Octree Rough Matrix 

The construction of an Octree Rough Matrix (ORM) from 3D spatial data involves a systematic three-step 

process, directly mirroring the methodology established for the Quad Rough Matrix (QRM) but adapted for 

the volumetric domain. 

4.1. Step 1: Construction of Octree from 3D Image/Spatial Data 

The initial step for constructing an ORM involves building a standard octree from the given 3D input data. 

This data can manifest in various forms, including a binary voxel grid, a grayscale volumetric image (such 

as a Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scan), or a point cloud that can be 

converted into a voxelized representation. The process follows the recursive subdivision principle inherent 

to octrees.3 Starting from a root node that encompasses the entire 3D space, this volume is recursively 

subdivided into eight equally sized octants. This subdivision continues until a predefined termination 

condition is met. 

Common termination conditions that dictate the granularity and depth of the octree include: 

● Maximum depth: The tree reaches a specified maximum number of levels or subdivisions.3 This 

limits the computational complexity and memory footprint. 

● Homogeneity: An octant is determined to be entirely "occupied" (all shaded voxels) or entirely 
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"empty" (no shaded voxels). In such cases, further subdivision is unnecessary, as the rough 

membership value would be either 1 or 0, respectively. 

● Minimum voxel count: An octant contains fewer than a given number of "shaded voxels".2 This 

condition is useful for filtering out sparse noise or very small features. 

● Minimum size/volume: An octant reaches a minimum spatial dimension or volume.2 This prevents 

infinite recursion in continuous spaces or overly fine subdivisions that may not be meaningful. 

● Intensity tolerance: Specifically for grayscale volumetric data, such as medical images, subdivision 

may cease if the intensity variation within an octant falls below a certain threshold.9 This allows for 

controlled compression and data fidelity, preserving essential information while reducing data volume. 

The construction process determines the total "Number of levels in the octree" (n), which is a crucial 

parameter for subsequent calculations of the 3D Dense Factor and ORM entries. The choice of termination 

condition is a critical design parameter for ORM, directly impacting the level of detail, computational cost, 

and the "roughness" captured. If the subdivision stops prematurely (e.g., a shallow tree due to a low 

maximum depth), many nodes might remain "rough" (i.e., their ORM values will be between 0 and 1), 

representing coarser approximations. Conversely, if the tree is allowed to go too deep (e.g., until every 

octant is perfectly crisp), it might over-segment the data, potentially losing the benefits of rough 

representation and becoming computationally expensive, closer to a traditional crisp voxel grid. The 

"intensity tolerance" 9 is particularly relevant as it allows for controlled compression and fidelity, implying 

that ORM can be tailored for specific application needs where a certain level of "acceptable roughness" is 

desired for efficiency or to filter out noise. This highlights a crucial design trade-off between the precision 

of rough approximation and the computational resources (memory, time) required. 

4.2. Step 2: Determining the 3D Dense Factor 

Once the octree structure is established, the 3D Dense Factor is calculated. This factor represents the 

volumetric contribution of the smallest possible subdivision unit to the overall 3D image or space. Adapting 

the formula from QRM , the 3D Dense Factor is calculated as: 

3𝐷 𝐷𝑒𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = {
𝐸𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
}

3

 

4.3. Step 3: Calculation of ORM Entries 

The final step involves calculating the ORM entries for each octant within the tree. This is performed 

iteratively for each level of the octree, typically starting from level 1 (the children of the root) up to level (n-

1), where 'n' is the total number of levels in the octree, analogous to the QRM calculation. 

For each octant within a given subdivision: 

● Determine the Number of shaded voxels: This count represents the total number of occupied voxels 

within the specific octant being evaluated. This value is obtained from the processed 3D input data, 

which could involve counting binary voxels or applying a threshold to grayscale volumetric data. 

● Calculate Total number of voxels in the region: This represents the total volumetric capacity of the 

current octant. For an octant at level 'n', this is calculated as: 

Total number of voxels in the region = (Total number of voxels in the 3D image) / 2^(3n) 

For our running example (a 100x100x100 voxel image, with a total of 1,000,000 voxels), for level one 

(n=1): 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 =  1,000,000 / 2^(3 ∗ 1)  =  1,000,000 / 8 =  125,000 

The consistent scaling factor of 23n for "total number of voxels in the region" is crucial for maintaining 

the hierarchical consistency of rough approximations across different octree levels. This factor 

precisely accounts for the volumetric reduction at each level of subdivision in an octree. If the original 
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3D image has L×L×L voxels, and at level n each octant has an edge length of L/2n, then its volume is 

(L/2n)3=L^3/(2n)^3=L^3/2^3n. This ensures that the Total number of voxels in the region accurately 

represents the volume of the current octant relative to the total image volume. This consistency is 

paramount for reliable spatial analysis. 

● Apply the ORM formula: Using the calculated Number of shaded voxels, the 3D Dense Factor, and 

Total number of voxels in the region, the ORM entry for that specific octant is computed: 

ORM = (Number of shaded voxels * 3D Dense Factor) / Total number of voxels in the region 

The entries for the 8 octants are typically organized into a conceptual 3D matrix or an ordered list 

corresponding to a defined traversal order (e.g., Z-order curve or Morton order) of the octree nodes. This 

process is repeated for all relevant levels of the octree, yielding a multi-resolution representation of the 3D 

spatial data's rough approximations. 

5. Applications, Advantages, and Limitations of ORM 

5.1. Potential Applications 

The Octree Rough Matrix (ORM) provides a robust framework for representing and analyzing 3D spatial 

data with inherent vagueness, opening up several promising application areas: 

● 3D Image Processing and Analysis: ORM can enhance tasks such as volumetric image segmentation, 

where boundaries between different tissues or objects are often fuzzy (e.g., in medical CT or MRI 

scans 9). It can also contribute to 3D data compression by representing regions with a rough 

membership value rather than requiring full binary detail, potentially reducing memory footprint while 

preserving critical boundary information. Feature extraction from complex 3D geological or 

environmental datasets could also benefit from ORM's ability to quantify spatial uncertainty. 

● Computer Graphics and Game Development: In dynamic 3D environments, ORM could be utilized 

for advanced Level of Detail (LOD) management, where objects at a distance can be represented with 

coarser rough approximations, reducing rendering overhead. It also offers a more nuanced approach to 

collision detection for objects with deformable or ill-defined boundaries, allowing for "soft" collisions 

based on rough overlap rather than rigid binary intersections. 

● Spatial Databases and Geographic Information Systems (GIS): ORM provides a powerful 

mechanism for indexing and querying vague 3D spatial objects, such as uncertain geological 

formations, atmospheric phenomena, or urban models with imprecise boundaries. It enables spatial 

queries that can retrieve regions based on their degree of "roughness" or occupancy, facilitating more 

flexible and realistic spatial analysis. 

● Robotics and Autonomous Systems: For robots navigating complex environments or autonomous 

vehicles interpreting sensor data (e.g., LiDAR point clouds), ORM can represent the environment with 

explicit uncertainty. This allows for more robust path planning and obstacle avoidance in situations 

where sensor readings are noisy or incomplete, providing a more reliable understanding of the spatial 

context. 

5.2. Advantages 

The proposed Octree Rough Matrix offers several distinct advantages over traditional 3D spatial data 

structures: 

● Explicit Representation of Vagueness: Unlike binary octrees that force crisp classifications, ORM 

explicitly quantifies and represents the inherent vagueness and uncertainty in 3D spatial data through 

its rough membership values (0, 1, and (0,1)). This provides a more faithful and informative model of 

real-world phenomena. 

● Multi-resolution Analysis: The hierarchical nature of the octree combined with rough set 

approximations enables multi-resolution analysis of 3D rough data. This allows for examining spatial 
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vagueness at different levels of granularity, from coarse overall approximations to fine-grained details, 

without losing the context of uncertainty. 

● Potential for Data Compression: By allowing nodes to hold rough membership values rather than 

being fully subdivided until crisp, ORM can achieve data compression. This is particularly beneficial 

for large 3D datasets where some level of "acceptable roughness" can significantly reduce memory and 

storage requirements without discarding all boundary information, as seen in medical imaging 

applications.9 

● Integration with Rough Set Theory: ORM firmly grounds 3D spatial representation within the formal 

mathematical framework of rough set theory. This integration opens avenues for applying established 

rough set operations and analytical techniques directly to 3D spatial data, facilitating more rigorous and 

theoretically sound spatial reasoning. 

5.3. Limitations and Challenges 

Despite its advantages, the implementation and application of ORM also present certain limitations and 

challenges: 

● Computational Cost: For extremely large 3D datasets or when constructing very deep octrees to 

achieve high precision, the computational cost of building and traversing the ORM can be substantial. 

This necessitates efficient algorithms and potentially parallel processing techniques. 

● Defining "Shaded Voxels": For non-binary volumetric data (e.g., grayscale CT scans or continuous 

sensor readings), the definition of "shaded voxels" requires a clear thresholding or classification 

mechanism. The choice of this threshold can significantly impact the resulting rough approximations 

and the ORM values. 

● Choice of Optimal Termination Conditions: Selecting the most appropriate termination conditions 

for octree construction (e.g., maximum depth, homogeneity threshold, minimum voxel count, intensity 

tolerance) is crucial. An improper choice can lead to over-segmentation (excessive detail, high cost) or 

under-segmentation (insufficient detail, loss of critical rough information). 

● Complexity of 3D Traversal and Indexing: While octrees provide efficient spatial indexing, 

operations like neighbor searches, range queries, and updates in 3D are inherently more complex than 

their 2D quadtree counterparts, requiring careful algorithmic design. 

6. COMPARATIVE ANALYSIS:  

To clearly delineate the foundation for extending QRM to ORM, a comparative analysis of quadtree and 

octree properties is presented in Table 1. This comparison highlights the structural and functional 

similarities and, more importantly, the critical differences between these two hierarchical data structures. 

This visual comparison clarifies how the QRM concepts (e.g., "number of shaded pixels," "dense factor," 

"total region size") must be adapted for the 3D octree context. For instance, it makes it evident that "pixels" 

become "voxels," "squares" become "cubes," and the scaling factor for "total region size" will change from 

an area-based 22n to a volume-based 23n. This table serves as a foundational bridge, visually setting the 

stage for the direct and logical adaptation of the QRM methodology to the ORM. 

Feature Quadtree Octree 

Dimensions 2D (planar) 3D (volumetric) 

Children per Node 4 (quadrants) 8 (octants) 
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Subdivision Shape Square or Rectangle Cube or Rectangular Prism 

Primary Applications 2D Image Processing, GIS, 

2D Collision Detection 

3D Graphics, Medical Imaging, Point Clouds, 

3D Collision Detection, Spatial Indexing 

Analogous To N/A (base hierarchical spatial 

structure) 

Quadtree (3D extension) 

Unit of Data Pixels (2D area units) Voxels (3D volume units) 

Recursive 

Subdivision Principle 

Divide into 4 equally sized 

quadrants 

Divide into 8 equally sized octants 

● Table 1: Comparison of Quadtree and Octree Properties 

 

7. Conclusion 

The conceptualization and methodology for the Octree Rough Matrix (ORM) represent a significant 

advancement in the representation and analysis of three-dimensional spatial data, particularly where 

vagueness and imprecision are inherent. By systematically extending the principles of the Quad Rough 

Matrix (QRM), ORM provides a robust and theoretically grounded framework for integrating rough set 

theory with hierarchical 3D spatial data structures. The transition from 2D pixels to 3D voxels, and the 

adaptation of concepts like the "dense factor" to volumetric measures, ensure that ORM accurately 

quantifies the degree of "occupancy" or "membership" within an octant, reflecting the true rough nature of 

3D spatial phenomena. 

ORM moves beyond traditional binary spatial representations by explicitly modeling boundary regions with 

values between 0 and 1, offering a more nuanced and faithful depiction of real-world objects and 

environments. This multi-resolution capability, coupled with the formal rigor of rough set theory, positions 

ORM as a powerful tool for applications in diverse fields, including advanced 3D image processing, 

computer graphics, spatial databases, and robotics, where handling uncertainty is paramount. 

Future research should focus on empirical validation of ORM through implementation and application to 

various real-world 3D datasets, such as medical imagery, geological models, and point clouds. 

Investigations into performance optimization techniques, including parallel processing and GPU 

acceleration for ORM construction and query operations, are crucial for handling massive datasets. Further 

work could also explore adaptive ORM construction methods that dynamically adjust termination conditions 

based on data characteristics or application requirements. Comparative studies with other uncertainty 

representation methods, such as fuzzy logic or probabilistic approaches within 3D spatial structures, would 

also provide valuable insights into ORM's strengths and weaknesses. Finally, the development of specific 

rough set operations (e.g., union, intersection, complement) directly applicable to ORMs could unlock new 

analytical capabilities for complex 3D spatial reasoning. 
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