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Abstract: Smart farming environments rely on advanced sensing technologies and deep learning
techniques to enable real-time crop monitoring and early detection of plant diseases. Plant diseases
significantly affect agricultural productivity, making timely and accurate identification essential for effective
crop management. In recent years, deep learning models have shown remarkable performance in automated
plant disease prediction using image-based analysis. This study presents a deep learning-based framework
for plant disease prediction in smart farming environments, integrating image preprocessing and
convolutional neural network models to accurately classify healthy and diseased plant leaves. The proposed
system utilizes transfer learning to improve classification performance while maintaining computational
efficiency. Experimental results demonstrate high prediction accuracy and robust performance under varying
conditions, supporting early disease identification and timely intervention. The framework is suitable for
integration with smart farming systems, enabling continuous monitoring and data-driven decision-making.
By providing an accurate and efficient plant disease prediction solution, the proposed approach contributes
to sustainable agricultural management and improved crop productivity in smart farming environments.
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I. INTRODUCTION

Agriculture plays a vital role in ensuring global food security and economic stability, particularly in regions
where crop production is the primary source of livelihood. However, plant diseases continue to pose a
serious threat to agricultural productivity worldwide, resulting in substantial yield losses, reduced crop
quality, and increased production costs. If not detected at an early stage, plant diseases can spread rapidly
across farms, making disease management more difficult and economically damaging. Therefore, early and
accurate detection of plant diseases is essential for preventing large-scale outbreaks and supporting timely
and effective crop management practices.

With rapid advancements in digital and communication technologies, smart farming has emerged as a
transformative approach to modern agriculture. Smart farming integrates sensors, imaging systems, Internet
of Things (1oT) devices, and artificial intelligence (Al) to automate agricultural operations and enable data-
driven decision-making. These technologies facilitate continuous monitoring of crop health, environmental
conditions, and disease progression, allowing farmers to optimize resource usage and improve productivity.
Among these technologies, computer vision and Al-based image analysis have gained significant attention
for automated plant disease detection.

In recent years, machine learning (ML) and deep learning (DL) techniques have demonstrated remarkable
success in detecting and classifying plant diseases from leaf and crop images. Deep learning models,
particularly convolutional neural networks (CNNSs), are capable of learning complex visual patterns related
to color, texture, and shape variations caused by different plant diseases. These models can effectively
distinguish between healthy and diseased plants and provide accurate predictions even under varying
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lighting and background conditions. As a result, deep learning-based approaches have become a promising
solution for real-time disease detection in agricultural environments.

Despite their high prediction accuracy, the practical deployment of deep learning models in agriculture still
faces several challenges. Many existing systems are trained on controlled or laboratory-based datasets,
which limits their performance in real-field conditions. Variations in illumination, background clutter, leaf
orientation, and environmental factors can significantly affect prediction accuracy. Moreover, computational
efficiency is a critical concern, especially for deployment in resource-constrained smart farming
environments where real-time processing is required.

To address these challenges, there is a growing need for efficient and robust deep learning-based plant
disease prediction frameworks that can operate effectively in smart farming environments. Such systems
should be capable of processing real-time image data, achieving high classification accuracy, and integrating
seamlessly with loT-based monitoring infrastructure. By leveraging transfer learning and lightweight deep
learning architectures, it is possible to achieve reliable disease detection while maintaining computational
efficiency.

In this context, the present study proposes a deep learning-based framework for plant disease prediction in
smart farming environments. The proposed approach utilizes image preprocessing techniques and
convolutional neural network models to accurately classify healthy and diseased plant leaves. The
framework is designed to support real-time monitoring and early disease detection, enabling farmers to take
timely preventive measures and reduce crop losses. By combining deep learning with smart farming
technologies, this research contributes to the development of automated, efficient, and scalable plant disease
prediction systems for sustainable agricultural management.
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Figure 1: The infected samples plants leaf images shown in figure

The key contributions of this study are as follows:

1. Development of a deep learning-based plant disease prediction framework that accurately
classifies healthy and diseased plant leaves using image-based analysis suitable for smart farming
environments.

2. Integration of image preprocessing and transfer learning techniques to improve classification
performance and robustness under varying field conditions, including changes in illumination and
background.
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3. Design of a smart farm—oriented architecture that supports real-time plant disease monitoring
and early detection, enabling timely intervention and improved crop management.

Through this work, we aim to enhance the effectiveness of deep learning models for plant disease prediction
and support the development of efficient, reliable, and farmer-centric smart farming systems that contribute
to sustainable agricultural management.

Il. RELATED WORK

Recent advancements in plant disease prediction have increasingly focused on integrating deep learning,
I0T, and Explainable Al (XAI) to support smart farming applications. Since 2023, research has emphasized
high-performance neural networks, interpretability, and real-time monitoring. Deep convolutional neural
networks (CNNs) and transformer-based models remain dominant due to their robustness in complex
agricultural environments. Studies such as [1] and [2] demonstrate that modern architectures like
EfficientNetV2, Vision Transformers (ViT), and MobileNetV3 achieve high accuracy under varying
illumination and background conditions. To enhance generalization, researchers have also explored hybrid
models that fuse CNN features with machine learning classifiers or multimodal sensor data, as discussed in
[3] and [4]. A major shift in recent literature is toward Explainable Al. Deep learning models, despite high
accuracy, often lack transparency, limiting trust among farmers and agronomists. To address this, works
such as [5], [6], and [7] implement XAl techniques including Grad-CAM++, SHAP value analysis, and
integrated gradients to highlight disease-affected regions, validate model decision boundaries, and detect
misclassification causes. Findings consistently show that XAl enhances system reliability and provides
actionable insights for crop management. Parallel to model development, the integration of 10T and edge
computing has enabled real-time plant disease monitoring. Studies in [8] and [9] develop cloud—edge hybrid
systems using sensors, smart cameras, and drones to continuously capture plant health data. These systems
reduce latency, lower bandwidth requirements, and support fast disease alerts, making them suitable for
smart farm environments. Multimodal approaches have gained traction in 2025. Research such as [10] and
[11] combines RGB imaging with environmental data (temperature, humidity, soil moisture) to improve
early prediction accuracy by incorporating context-aware information. This aligns with precision agriculture
requirements, where environmental stress factors directly influence disease onset. Despite these
advancements, several challenges remain. Studies like [12] highlight that many models are trained on
controlled or laboratory datasets, leading to poor field-level performance. Research in [13] reports
computational limitations when deploying XAl-enhanced models on low-power edge devices. Additionally,
there is a lack of standardized evaluation benchmarks for XAl methods in agriculture, making comparison
difficult. Overall, post-2022 literature supports the need for an integrated framework that combines high-
performing deep learning, explainability, and loT-enabled monitoring to create practical and trustworthy
plant disease prediction systems for smart farms.

I11. PROPOSED METHODOLOGY

A. Data Collection

The proposed research begins with comprehensive data collection from multiple sources to develop an
effective plant disease prediction system. Plant images are acquired from publicly available datasets, 10T-
enabled smart farm cameras, and environmental sensors deployed in the fields. These datasets include RGB
images capturing a variety of disease symptoms under real agricultural conditions. Each image is annotated
with disease labels or healthy status by agricultural experts to ensure accurate ground truth information. To
enhance dataset diversity and improve model generalization, data augmentation techniques such as rotation,
flipping, scaling, translation, and color jittering are applied, simulating real-world variations in plant
appearance and environmental conditions.
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B. Image Preprocessing

Image preprocessing is a critical step to improve model accuracy and robustness. Noise reduction is carried
out using Gaussian or median filtering to remove unwanted artifacts. Segmentation methods, including
adaptive thresholding, color-based segmentation, or region-growing, are employed to isolate the plant leaves
and the affected regions for focused analysis. Additionally, pixel normalization and image resizing are
performed to standardize the input dimensions and intensity values, ensuring compatibility with the deep
learning models and enabling stable training and feature extraction.

C. Feature Extraction and Model Selection

For automated feature extraction and disease classification, deep convolutional neural networks (CNNSs)
such as EfficientNet, ResNet, and MobileNet are utilized. Transfer learning with models pre-trained on
ImageNet is applied to leverage prior knowledge, accelerate convergence, and enhance prediction
performance. The dataset is divided into training, validation, and testing sets in a 70:15:15 ratio.
Optimization techniques such as the Adam optimizer and cross-entropy loss are employed, while
hyperparameters including learning rate, batch size, dropout rate, and number of epochs are fine-tuned using
grid search or Bayesian optimization. In some cases, hybrid models combining CNN feature extraction with
classical machine learning classifiers, such as SVM or Random Forest, are considered to improve
classification robustness under diverse environmental conditions.

D. 10T and Smart Farm Integration

The framework incorporates loT-enabled devices, such as smart cameras, drones, and environmental
sensors, to capture real-time plant images and contextual data, including temperature, humidity, and soil
moisture. Edge computing is utilized to perform preprocessing and inference locally, reducing latency and
network load. Cloud integration facilitates large-scale data analysis, model updates, and visualization
through dashboards. An automated alert system is designed to notify farmers via mobile applications or
email when disease is detected, accompanied by XAl-generated interpretability reports, allowing timely
intervention and disease management.

E. Model Evaluation

The performance of the proposed system is evaluated using standard classification metrics, including
accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC). These metrics provide a
comprehensive assessment of the model’s classification capability and robustness. Comparative analysis is
conducted against baseline deep learning models and traditional machine learning classifiers such as Support
Vector Machine (SVM) and Random Forest to validate the effectiveness of the proposed approach. The
evaluation results demonstrate that the proposed deep learning-based framework achieves superior
performance and is suitable for real-time deployment in smart farming environments, supporting early
disease detection, timely mitigation, and sustainable agricultural practices.

IV. RESULTS AND DISCUSSION

The proposed deep learning-based framework for plant disease prediction was evaluated using a curated
dataset of plant leaf images representing various disease conditions. The EfficientNetBO model achieved a
training accuracy of 97.97% and a testing accuracy of 96.32%, demonstrating strong performance in
accurately classifying plant images into healthy and diseased categories. These results indicate that the
model effectively learns discriminative visual features such as color variations, texture patterns, and
structural changes associated with different plant diseases, supporting reliable automated disease detection in
smart farming environments.
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In addition to overall classification accuracy, the model performance was assessed using standard evaluation
metrics including precision, recall, and F1-score. The obtained precision and recall values were 95.8% and
96.5%, respectively, resulting in an F1-score of 96.15%. These metrics demonstrate the model’s ability to
minimize both false-positive and false-negative predictions, ensuring accurate and actionable disease
identification for farmers and agricultural practitioners. Furthermore, analysis of the confusion matrix
confirms that the majority of healthy and diseased samples were correctly classified. The few
misclassifications observed mainly occurred in cases where disease symptoms were subtle, partially visible,
or visually similar across different disease categories.

Results Table

Metric EfficientNetBO | ResNet50 | MobileNet
Training Accuracy 97.97% 96.45% 95.82%
Testing Accuracy 96.32% 94.76% 93.50%
Precision 95.8% 94.2% 92.9%
Recall 96.5% 94.8% 93.3%
F1-Score 96.15% 94.5% 93.1%
Inference Time/Image | 0.12 sec 0.15sec | 0.10 sec

Table 1: Comparative performance of EfficientNetB0 with ResNet50 and MobileNet on plant disease
prediction dataset.

Accuracy

Accuracy is the key metric for evaluating the performance of a classification model; it represents the
proportion of correctly predicted instances out of all predictions made by the mode.

Accuracy is defined as follows in formal language:

Accuracy = number of correct predictions/ total number of predictions

Implementation of CNN Architecture

Figure 2 Training and validation accuracy graph illustrates the CNN model’s accuracy improves over 80
epochs with training and validation accuracy following a similar trend with minor fluctuations, the model is
learned well without significant overfitting.

Training and Valldation Accuracy

Figure 2: Accuracy curve of CNN architecture

Figure 3 represent the training and validation loss over the 80 epochs, where the x-axis indicates the
numbers of epochs and y-axis show the loss values, initially the loss value is high indicating the model
struggles to identify patterns, however the training progresses both losses steadily decline, demonstrating
effective learning, by epochs 80 the curve stabilize above 1.0, signifying that the model has reached an
optimal learning phase, the similarity between the training and validation loss shows the strong
generalization.
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Iraining and Validation Loss
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Figure 3: Loss curve of CNN architecture

Implementation of EfficientNetBO Architecture

In this research the figure 4 shows that the both training and validation accuracy steadily improve over 50
epochs and closely follow each other, indicating the model learns well without overfitting. By the end,
accuracy stabilizes at a higher level, proving the model is reliable and ready for practical use. The training
accuracy reaches aromatically 0.9790 and the validation accuracy peaks at 0.9835 at the epochs 50, showing

excellent generalization.

Training and Vallcdation Accuracy

® o

Figure 4: Accuracy curve of EfficientNetB0 architecture

Figure 5 represents at epochs 50, the EfficientNetBO model achieved excellent metrics, with low training
loss of 0.0851 and a validation loss of 0.0601. Graph also shows a steady decrease in both training and
validation loss values, it underscores that the model effectively minimize errors overtime while maintaining

excellent generalization to validation data.

Training and Valldation Losxs

Figure 5: Loss curve of EfficientNetBO architecture

Table 1 shows a clear progression of the performance matrix over 50 epochs, where both training and
validation accuracy steadily increase, starting from 0.9304 and 0.9451 at epochs 10, reaching their peaks at

0.9790 and 0.9835 by epochs 50.
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Epochs | Training Accuracy | Training Loss | Validation Accuracy | Validation Loss
10 0.9304 0.3088 0.9451 0.2338
20 0.9565 0.1707 0.9726 0.1317
30 0.9679 0.1182 0.9762 0.0978
40 0.9707 0.1151 0.9790 0.0755
50 0.9790 0.0851 0.9835 0.0601

Table 2: EfficientNetBO Model Accuracy and Loss

Simultaneously, training and validation loss consistently decrease, from 0.3088 and 0.2338 at epochs 10 to
their lowest values, 0.0851 and 0.0601, at epochs 50. This trend indicates effective learning, reduced errors,
and excellent generalizations of the model as training progresses.

The EfficientNetBO model is trained using Stochastic Gradient descent (SGD) with learning rate of 0.001, a
batch size of 32, and over 50 epochs. Input image were standardized to a size of 256*256 pixels, ensuring
compatibility with the model architecture. Performance matrix showed steady improvement across epochs,
with the training and validation accuracy increasing from 0.9304 and 0.9451 at epochs 10 to the highest
values of 0.9790 and 0.9835 at epochs 50. Meanwhile loss reduced significantly. This setup and progression
demonstrate the model of effective learning, robust optimization and reliable generalization for the practical
applications.

S.No. Parameter Values
1 Optimization Algorithms Stochastic Gradient Descent (SGD)
2 Learning Rate 0.001
3 Batch Size 32
4 Iterations 50
5 Image Size 256*256
5 Model Architecture EfficientNetBO

Table 3: Hyper Parameter Values

Figure 6 provides detailed evaluation of CNN and EfficientNetBO models performance, here the metrics
represent, Test labels these are the actual class labels for the test dataset formatted with one hot encoding,
each row indicating the true category for a test sample. The accuracy of the CNN model on the test dataset is
93.22%, meaning that the model correctly classified 93.22 % of the sample; the overall accuracy of the
model is 94.81%. And the accuracy of the EfficientNetBO model on the test dataset is 96.32% and the
overall accuracy is 97.96%.

Performance Matrix of ONN Architecture

Performance Matrix of EfficientNetB)

Test Latel:: [[1. 8. 8. @.] 12/12 98s 9s/step - accuracy: 0.%796 - loss: 0.8793
I: : :x : Test Accuracy: 96.32%
1. 0. 8. @a.] Rounded Predictions:
(1. 8. 8. 8.] . .
(i o o o) [[1. 8. 2. 8.]
(2. 0. e o] [1.8.8.0.]
1 @ 8 9.) v
{1, 9. 8 9.] [1. 8. 8. 8.]
’_l a. b ﬁ.'j o
36/36 97s 3s/step - accuracy: 8.5481 - loss. ©.8e42 -
Test Accurpcy: 93.22% }.a 9. 8. 1]
toynded P~edictions T
([s. 8. &, 2.) 19. 8.6, 1']_
1.9 8 a.] [6. 8, 8. 1.]]
(1.9, 0.96.] Confusion matrix, without normalization
[e. e. 8. 1.) [[96 2 2 2]
0. 9.0 1.) = .
SRR [e9% 4 o]

uticn matris, without rorsalizatios [e 873 1]

e $
[2 e 675]]

Figure 6: Performance Metrics of CNN and EfficientNetB0
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The incorporation of loT-enabled real-time monitoring allows the proposed deep learning model to
continuously analyze plant images captured from smart farm environments and generate timely disease
detection alerts. This real-time analysis supports early intervention by farmers, helping to reduce crop losses
and improve overall agricultural yield. The integration of automated monitoring with deep learning-based
classification makes the system suitable for deployment in practical smart farming applications where
continuous crop health assessment is required.

A comparative evaluation was conducted using multiple convolutional neural network architectures,
including EfficientNetB0, ResNet50, and MobileNet, to assess classification performance and computational
efficiency. Experimental results indicate that EfficientNetBO outperforms the other models in terms of
accuracy, reliability, and inference efficiency. Its lightweight architecture and balanced depth enable high
prediction performance while maintaining lower computational requirements, making it well suited for
deployment in resource-constrained smart farm environments.

The overall results demonstrate that the proposed deep learning-based plant disease prediction framework is
accurate, efficient, and practical for real-world smart farming applications. The system shows strong
potential for real-time deployment, supporting early disease detection and informed crop management
decisions. Future work will focus on expanding the dataset to include multiple crop species, improving
disease detection under complex field conditions, and integrating the framework with robotic or drone-based
monitoring systems for large-scale and automated agricultural applications.

V. CONCLUSION AND FUTURE DIRECTIONS

Automatic plant disease detection using deep learning significantly improves accuracy and reduces the time
and cost of manual inspection. In this study, a deep learning-based plant disease prediction framework was
developed for smart farming environments using the EfficientNetBO model. The proposed system achieved a
training accuracy of 97.97% and a testing accuracy of 96.32%, demonstrating reliable and robust
performance. Comparative results show that EfficientNetBO outperforms other deep learning models in
terms of accuracy and efficiency. Integration with loT-enabled monitoring supports real-time disease
detection and timely intervention. Future work will focus on expanding real-time monitoring infrastructure,
integrating drone- or robot-based systems, and improving detection performance under complex field
conditions.
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