

A Review of Fracture Mechanics in Concrete: Evolution, Models, and Experimental Approaches

Prof. Varsha Gokak¹ Dr. K.G . Vishwanath²

¹Assistant Professor, ²Research Supervisor,

^{1,2} Department of Civil Engineering,

^{1,2}Jain college of Engineering, Visvesvaraya Technological University,
Belagavi, Karnataka, India

Abstract: Concrete is a quasi-brittle material, and fracture mechanics is essential to comprehending how it cracks and fails. An outline of the development of fracture mechanics principles as they relate to concrete structures is provided in this review. It is addressed how traditional strength-based methods fall short in capturing size effects and post-peak behavior. The importance of nonlinear and energy-based fracture models is emphasized. Examined is the fracture process zone's function in controlling crack initiation and propagation. Important theoretical developments are covered, such as the size impact law and fake crack models. A summary of experimental methods for figuring out fracture parameters like fracture energy is provided. The benefits of standardized testing techniques for accurate data interpretation are examined. The latest advancements in sophisticated measurement methods and numerical modeling are described. The research highlights how crucial fracture mechanics is to enhancing the longevity and design dependability of contemporary concrete buildings.

Index Terms - Fracture mechanics; Concrete; Fracture process zone; Size effect; Fracture energy; Nonlinear fracture models; Crack propagation; Experimental methods

1.0 Introduction

Although concrete is the most often used building material in the world, fracture and cracking have a significant impact on its mechanical performance. Concrete behaves quasi-brittely, in contrast to ductile materials, with a noticeable fracture process zone before failure, stable crack propagation, and microcrack initiation. Crack propagation and size impacts in concrete structures have not been adequately described by traditional strength-based design approaches, which mainly rely on elastic theory and ultimate strength criteria. Because of this restriction, models of fracture mechanics that are uniquely suited to cementitious materials have been developed.

The energy balance idea for crack propagation in brittle materials was first developed by A. A. Griffith in the 1920s, which laid the groundwork for fracture mechanics. Although Griffith's theory worked well for homogenous materials like glass, concrete's heterogeneous microstructure and notable nonlinear fracture behavior made it impossible to apply directly. These ideas were expanded upon by later advances in linear elastic fracture mechanics (LEFM), but their application to concrete remained constrained, especially when it came to anticipating crack formation before peak load and taking material softening into consideration.

The development of nonlinear fracture mechanics models in the 1970s marked a significant advancement. The size effect law was developed by Zdeněk P. Bažant and colleagues, who showed that energy loss during fracture causes structural strength to decrease with specimen size. Concurrently, Arne Hillerborg put forth the fictitious crack model, which specifically included fracture energy and tension softening to depict the

development of cracks in concrete. These advancements signaled a change from explanations of fracture processes that were only elastic to ones that were more realistic.

Concrete fracture mechanics has continued to develop in recent decades thanks to developments in experimental and computational modeling methods. These days, it is common practice to simulate crack initiation and propagation under complicated loading circumstances using cohesive zone models, extended finite element techniques (XFEM), and discrete element approaches. Fiber-reinforced concrete, ultra-high-performance concrete, and environmentally friendly cementitious materials are further areas of current study where fracture behavior is crucial to structural performance and longevity. Fracture mechanics is now a crucial framework for comprehending damage, advancing design techniques, and boosting the durability and safety of concrete buildings.

1.1 Review of Size Effect and Fracture Energy in Concrete Structures

Zdeněk P. Bažant's work, especially his studies on the size effect law (SEL), is one of the most significant contributions to the fracture mechanics of concrete. The inability of conventional strength-based methods to explain why geometrically equivalent concrete buildings show declining nominal strength with increasing size was a significant shortcoming that Bažant's study addressed. Although this phenomena was frequently noted in experimental investigations, traditional theories of elasticity and plasticity were unable to explain it. In-depth experimental and analytical research on notched concrete beams exposed to three-point bending was carried out by Bažant and Planas (1998). The study showed that energy dissipation inside a finite fracture process zone (FPZ) ahead of the crack tip controls fracture behavior in concrete. The SEL bridges the gap between strength theory and linear elastic fracture mechanics (LEFM), which assumes an infinitesimally small crack tip zone, by incorporating material fracture energy and characteristic length. Across a broad range of specimen sizes, the results demonstrated excellent agreement between theoretical predictions and experimental evidence.

The imaginary crack model put forward by Arne Hillerborg et al. (1976) is another important addition. Instead of using a sharp crack tip, this method models the propagation of cracks in concrete using a softening stress-crack opening connection. The fact that fracture energy is a basic material attribute controlling crack propagation was confirmed by experimental investigations employing wedge-splitting and bending tests. Stable fracture propagation before peak load was effectively explained by this model, something that LEFM was unable to do.

These traditional ideas have been applied to contemporary materials like fiber-reinforced concrete (FRC) in more recent research. According to experimental studies conducted on notched beams, fiber bridging considerably raises post-cracking ductility and fracture energy. The accuracy of fracture mechanics-based parameters in predicting structural performance under service and ultimate loads is further supported by numerical simulations employing cohesive zone models and extended finite element techniques (XFEM).

All things considered, these investigations show that fracture mechanics offers a solid theoretical foundation for comprehending concrete's size dependence, energy dissipation, and cracking. The literature review emphasizes how important it is to include fracture energy and characteristic length factors in contemporary concrete structure design and analysis, especially for large-scale and high-performance applications.

1.2 Review of Concrete Fracture Process Zone and Nonlinear Fracture Models

The idea of the fracture process zone (FPZ) has been essential to improving our knowledge of how fractures occur in concrete. Concrete shows a sizable area of microcracking, aggregate interlock, and energy dissipation upstream of the crack tip, in contrast to materials that are perfectly brittle. Because this nonlinear zone could not be represented by early applications of linear elastic fracture mechanics (LEFM), researchers proposed new fracture models that were especially appropriate for quasi-brittle materials.

Zdeněk P. Bažant's experimental studies showed that the FPZ has a finite size that depends on structural dimensions and material properties. Bažant demonstrated that fracture propagation cannot be considered a purely elastic phenomenon through experiments on geometrically comparable concrete specimens. His

crack band theory made it possible for numerical models to accurately replicate post-peak softening behavior by introducing a characteristic length parameter to account for strain localization and dispersed cracking.

Arne Hillerborg made parallel advancements with his fictitious crack model, which substituted a cohesive stress-crack opening relationship for the classical stress singularity at the crack tip. Experimental investigations using wedge-splitting and three-point bending tests verified that fracture energy is a basic material attribute controlling the formation of cracks. This method became popular in research and design recommendations because it offered a useful way to include softening behavior in finite element analysis. Concrete fracture parameters may now be determined using standardized test procedures thanks to the efforts of worldwide research groups like RILEM. RILEM guidelines made it possible to evaluate fracture energy and tensile softening laws consistently, which made it easier to compare different experimental investigations. The application of fracture mechanics to fiber-reinforced and high-performance concretes, where improved post-cracking behavior dramatically changes fracture response, was also promoted by these standards.

Recent studies combine sophisticated numerical approaches like cohesive zone modeling and extended finite element methods (XFEM) with nonlinear fracture models. These methods increase the forecast accuracy for complicated loading and boundary circumstances by simulating fracture initiation and propagation without the need for specified crack routes. All of the evaluated works attest to the fact that nonlinear fracture mechanics models offer a trustworthy and physically significant framework for examining concrete structure failure, durability, and cracking.

1.3 Review of Experimental Determination of Fracture Parameters in Concrete

For fracture mechanics to be used practically in concrete structures, precise fracture parameter determination is necessary. Early studies showed that because they did not take energy dissipation during fracture into account, traditional tensile and flexural strength tests were insufficient for describing crack propagation behavior. This restriction led to the creation of experimental techniques designed especially to measure fracture energy and associated factors.

RILEM's standardized testing protocols, which concentrated on notched concrete beams exposed to three-point bending, made a substantial contribution in this field. Through the integration of the load-displacement response up to total failure, these tests allowed for the direct measurement of fracture energy. The experimental findings demonstrated that aggregate size, cement matrix strength, and specimen shape all affect fracture energy. These results demonstrated how inadequate linear elastic fracture mechanics (LEFM) is when used on unmodified concrete.

Zdeněk P. Bažant conducted further experiments to investigate the impact of boundary conditions and specimen size on recorded fracture parameters. His research showed that the existence of a fracture process zone (FPZ) causes fracture energy and critical stress intensity variables to show size dependency. These findings supported theoretical advancements like the size effect law and crack band theory and reaffirmed the necessity of nonlinear fracture mechanics models.

Fracture testing has been extended to advanced cementitious materials, such as fiber-reinforced and high-performance concretes, in recent experimental studies. The precision of fracture parameter estimation has increased thanks to load-crack mouth opening displacement (CMOD) measurements acquired with clip gauges and digital image correlation (DIC) methods. Better calibration of numerical models is made possible by these techniques, which provide thorough observation of fracture initiation, stable crack propagation, and post-peak behavior.

All things considered, the reviewed research shows that experimentally established fracture parameters offer a solid foundation for simulating the spread of cracks and structural failure in concrete. By bridging the gap between laboratory research and structural design practice, standardized fracture testing and sophisticated measurement techniques have greatly increased the applicability of fracture mechanics ideas.

1.4 Discussions

1. Limitations of Strength-Based Design Approaches: All of the evaluated research show that traditional strength-based criteria are insufficient to describe concrete fracture behavior. It is consistently demonstrated by experiment that elastic theory alone is insufficient to explain cracking, size dependency, and post-peak softening. This emphasizes how important fracture mechanics-based metrics like characteristic length and fracture energy are for concrete investigation.
2. Significance of the Fracture Process Zone (FPZ) : In order to differentiate concrete from optimally brittle materials, all three evaluations highlight the existence of a finite fracture process zone prior to the crack tip. Through microcracking, aggregate interlock, and crack bridging, the FPZ regulates energy dissipation, all of which have a major impact on the structural reaction before failure. Inaccurate forecasts of crack formation and ultimate load capacity result from disregarding the FPZ.
3. Size Effect as a Governing Phenomenon: The examined research support Zdeněk P. Bažant's size impact law by showing that structural size significantly affects nominal strength. Scaling laboratory results to real constructions is significantly impacted by the observed shift from strength-based behavior in small specimens to energy-controlled behavior in bigger structures.
4. Role of Fracture Energy as a Material Property: Fracture energy is a crucial material characteristic that controls the propagation of cracks in concrete, as confirmed by experimental experiments. However, it is also demonstrated to be impacted by testing technique, specimen geometry, and aggregate size. When comparing fracture energy levels from various research, this highlights the necessity of using consistent testing methods and exercising caution in interpretation.
5. Effectiveness of Nonlinear Fracture Models: Concrete fracture behavior can be realistically represented using nonlinear fracture mechanics models, especially the frictional crack model put forth by Arne Hillerborg. Stable crack growth and post-peak softening, which are essential for evaluating serviceability and durability but lacking in linear elastic fracture mechanics, are effectively captured by these models.
6. Importance of Standardized Testing Methods: The comparability and dependability of fracture parameter measurements have been greatly enhanced by RILEM's recommendations. By connecting experimental research and numerical modeling, standardized notched beam testing and CMOD-based measurements provide consistent evaluation of fracture properties.
7. Advances in Experimental Techniques: The accuracy of fracture testing has been improved by the incorporation of contemporary measurement instruments like clip gauges and digital image correlation. The beginning and propagation of cracks may be observed in detail thanks to these approaches, which improves the calibration of cohesive laws and numerical models.
8. Implications for Numerical Modeling and Design: The literature study shows that parameters based on fracture mechanics are crucial inputs for numerical techniques such as extended finite element methods and cohesive zone modeling. Better predictions of concrete structural failure mechanisms, load-displacement response, and cracking patterns result from the inclusion of these characteristics.
9. Relevance to Modern and Advanced Concretes: According to the discussion, ideas related to fracture mechanics are becoming more and more significant for fiber-reinforced, high-performance, and environmentally friendly concretes. Conventional strength tests alone are insufficient to assess enhanced post-cracking behavior and energy absorption processes in these materials, highlighting the ongoing importance of fracture mechanics.
10. Research Gaps and Future Scope: Despite tremendous progress, material heterogeneity and test dependency continue to make it difficult to define fracture characteristics that are generally applicable. To create design-oriented fracture models appropriate for everyday engineering practice and to connect microscale fracture mechanisms with macroscale behavior, more study is needed.

1.5 Conclusions:

Concrete is a quasi-brittle material, and fracture mechanics offers a thorough foundation for comprehending cracking and failure. The literature study demonstrates that size impacts, stable crack propagation, and post-

peak softening behavior cannot be adequately captured by traditional strength-based methods. Concrete fracture can be represented more realistically by incorporating energy dissipation mechanisms and distinctive length scales. In order to control nonlinear crack propagation and structural response, the fracture process zone is essential. The prediction of crack initiation and failure has been greatly enhanced by the size effect law and fake crack models. These theoretical advances have been confirmed by experimental studies under various loading scenarios and specimen sizes. Reliable determination of fracture parameters, including fracture energy, has been made possible by standardized fracture testing protocols. Numerical model calibration and experimental accuracy have been significantly improved by advances in measurement techniques. For contemporary, large-scale, fiber-reinforced concrete constructions, fracture mechanics is very crucial. All things considered, improving the safety, robustness, and design dependability of concrete infrastructure still requires an understanding of fracture mechanics.

References

1. Griffith, A. A. (1921). The phenomena of rupture and flow in solids. *Philosophical Transactions of the Royal Society A*, 221(582–593), 163–198.
2. Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics. *Cement and Concrete Research*, 6(6), 773–782.
3. Bažant, Z. P., & Planas, J. (1998). *Fracture and size effect in concrete and other quasibrittle materials*. CRC Press.
4. Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics. *Cement and Concrete Research*, 6(6), 773–782.
5. RILEM TC 162-TDF. (2002). Test and design methods for steel fibre reinforced concrete. *Materials and Structures*, 35, 579–582.
6. Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. *Materials and Structures*, 16(3), 155–177.
7. RILEM TC 50-FMC. (1985). Determination of the fracture energy of mortar and concrete. *Materials and Structures*, 18, 285–290.
8. Bažant, Z. P., & Kazemi, M. T. (1990). Determination of fracture energy, process zone length and brittleness number from size effect. *Materials and Structures*, 23, 216–223.
9. Planas, J., Guinea, G. V., & Elices, M. (1995). Size effect and inverse analysis in concrete fracture. *International Journal of Fracture*, 71, 169–186.