

Disassembly-driven Design: Redefining Upcycling in the Age of Circular Manufacturing

Aarya Khandekar

Student

The Raika School, Pune, India

Abstract: Industrial design sectors generate massive waste streams annually—with textiles alone producing 120 million tonnes and furniture contributing 10.78 million tonnes globally. Despite growing market interest, with the global upcycled fashion market projected to reach USD 16.70 billion by 2032, most creative upcycling remains confined to small-scale, artisanal production. This paper examines how Design for Disassembly (DfD) principles can transform upcycling from craft-based practice to industrial-scale manufacturing. Products such as Fairphone's modular electronics (7-year lifecycle), BMW i3's automotive design (15-year battery lifecycle), Herman Miller's circular furniture (91% recyclable content), and Patagonia's textile recovery systems, demonstrate that DfD implementation achieves higher material recovery rates versus traditional approaches, extends product lifecycles significantly, and reduces carbon footprints. These findings reveal that systematic integration of modular design, reversible connections, material compatibility, and digital traceability enables upcycling to achieve industrial scale, economic viability, and significant environmental impact reduction across multiple industrial design sectors.

Index Terms - Upcycling, Design for Disassembly (DfD), DfD Principles, Sustainability.

I. INTRODUCTION

I.1. The Upcycling Opportunity

Creative upcycling—the process of redesigning and remanufacturing discarded materials into new products of higher value, quality, or desirability—represents a critical strategy for addressing industrial waste and extending product lifecycles (Singh, 2022). Unlike recycling, which breaks materials down to raw feedstock, upcycling preserves and refashions materials without downgrading their structural integrity, creating new aesthetic, functional, or market value while maintaining material properties.

The global upcycled products market demonstrates significant growth potential, valued at USD 8.25 billion in 2024 and projected to reach USD 16.70 billion by 2032 at a 9.21% compound annual growth rate (Fortune Business Insights, 2025, Sajdeh et al., 2025). Consumer surveys indicate over 70% of Gen-Z buyers prefer products with visible sustainability credentials, driving market demand (Deloitte, 2023). However, this growth potential remains largely unrealized due to systemic barriers limiting upcycling to small-scale, artisanal production.

I.2. The Industrial Waste Crisis

Industrial design sectors contribute substantially to global waste streams. Fast fashion alone produces approximately 120 million tonnes of textile waste annually, with only 12% currently recovered through reuse or recycling (Fibershed, 2024). The furniture industry contributes 10.78 million tonnes of bulky waste annually in the EU, with 80-90% destined for landfill or incineration (Forrest et al., 2017). Electronics waste reaches 57.4 million tonnes globally with 17.4% recovery rates, while automotive parts generate 8.5 million tonnes with 22% recovery.

Current disposal patterns reveal massive inefficiency: 57% of textile waste goes to landfills, 25% is incinerated, leaving only 18% for reuse and recycling (BusinessWaste, n.d.). This linear "take-make-dispose" model creates enormous environmental costs while wasting valuable material resources worth an estimated \$150 billion annually in the fashion sector alone (Sajdeh et al., 2025).

I.3. Research Problem and Hypothesis

Despite growing consumer interest and successful pilot programs, most creative upcycling remains confined to small-scale production (Richardson, 2011). Economic viability challenges include 15-30% higher per-unit costs compared to virgin materials due to extra labor and sorting requirements. Supply chain complexity adds 20-40% additional lead time, while feedstock variability increases defect rates by up to 25% in pilot manufacturing runs (Pearce, 2023).

This paper examines the hypothesis that Design for Disassembly (DfD) principles provide the systematic framework necessary to transform upcycling from artisanal craft to industrial-scale manufacturing. DfD's emphasis on modular design, reversible connections, material compatibility, and systematic recovery addresses the core barriers limiting upcycling scalability.

II. RESEARCH METHODOLOGY

II.1. Research Design

This study employs a mixed-methods approach combining literature review, case study analysis, and quantitative assessment of DfD implementation outcomes. The research examines four industry sectors—electronics, automotive, furniture, and textiles—to evaluate cross-sector applicability of DfD principles.

II.2. Case Selection Criteria

Case studies were selected based on three criteria: (1) implementation of systematic DfD principles, (2) demonstration of scaled operations beyond prototype level, and (3) availability of quantitative performance data. Selected cases include Fairphone (electronics), BMW i3 (automotive), Herman Miller Aeron chair (furniture), and Patagonia Worn Wear (textiles).

II.3. Data Collection and Analysis

Secondary data sources include corporate sustainability reports, life cycle assessments, academic studies, and industry analyses. Performance metrics analyzed include material recovery rates, product lifecycle extension, carbon footprint reduction, and economic viability indicators. Comparative analysis contrasts traditional manufacturing approaches with DfD-enabled systems across these metrics.

III. FINDINGS

III.1. Design for Disassembly: Principles and Implementation

Design for Disassembly (DfD) is a strategic design approach that integrates planning for a product's end-of-life disassembly and material recovery into the initial design process (Light House Sustainability Society, 2021). DfD transforms products from single-use entities into "material banks" that can be systematically harvested for reuse, fundamentally shifting from linear to circular design thinking (Guruge et al., 2024).

Core DfD principles:

1. Material Selection and Compatibility: Pure, homogeneous materials rather than composites; non-toxic, environmentally safe materials; standardized material types for sorting efficiency (Farouk & Abdelsabour, 2019).
2. Connection and Fastening Systems: Mechanical connections (bolts, screws, clips) over chemical bonds (adhesives, welds); accessible fastening points with standard tools; reversible connections enabling repeated assembly-disassembly cycles (Farouk & Abdelsabour, 2019; Light House Sustainability Society, 2021).
3. Modular Design Architecture: Standardized component interfaces; hierarchical disassembly sequences; modular sub-assemblies grouping components with similar lifecycles (Light House Sustainability Society, 2021).
4. Information and Documentation Systems: Material identification through digital passports and QR codes; integrated disassembly instructions; component lifecycle tracking (Light House Sustainability Society, 2021).
5. Accessibility and Tool Standardization: Clear access paths to components; standard tool compatibility; adequate clearance for disassembly operations (Farouk & Abdelsabour, 2019).

III.2. Cross-Industry DfD Implementation Results

DfD implementation demonstrates substantial material recovery improvements across industries. Steel manufacturing achieves 90% material recovery through systematic recycling processes, while temporary structures designed for disassembly recover up to 90% of materials and fittings. In contrast, traditional disposal approaches show significantly lower recovery: furniture waste faces 80-90% landfill/incineration rates, textiles achieve only 18% reuse and recycling, and e-waste reaches 17.4% recovery globally (Crowther, 1999; Wagaw & Babu, 2023).

Electronics: Fairphone Modular Smartphone

Fairphone demonstrates systematic DfD in consumer electronics through complete modularity enabling user disassembly with standard tools (Ballester, 2021). The design features easily removable components including battery, display, and camera modules that can be replaced or upgraded individually. Users can completely disassemble the phone using only a standard screwdriver, with QR codes and visual instructions guiding disassembly procedures (Ballester, 2021).

Performance Results:

- Product lifecycle: 7 years versus industry standard 2-3 years (Sánchez et al., 2024).
- Material recovery: 85% recyclable content through modular design (Sánchez et al., 2024).
- Carbon impact reduction: 30% reduction when extending use from 3 to 5 years (Cook & Jardim, 2017).
- User satisfaction: High reparability ratings with modular component marketplace.

Automotive: BMW i3 Electric Vehicle

The BMW i3 exemplifies DfD principles in automotive manufacturing through systematic material separation and modular construction. The vehicle uses pure material categories—aluminium for chassis, carbon fiber for body, thermoplastics for interior—enabling clean material streams during disassembly (Hadgu, 2024; Sloan, 2014). The carbon fiber body structure uses exclusively mechanical assembly with accessible bond lines, allowing systematic disassembly without material degradation (Hadgu, 2024).

Performance Results:

- Battery lifecycle: 15 years through module replacement and refurbishment.
- Material recovery: 88% recovery rate through systematic disassembly.
- Manufacturing efficiency: 5-minute assembly time versus traditional 3-5 day carbon fiber processing. (Edelstein, 2015)
- Disassembly effectiveness: Mechanical assembly provides superior ease of disassembly compared to adhesive bonding (Hadgu, 2024).

Furniture: Herman Miller Aeron Chair

Herman Miller's Aeron chair demonstrates DfD in furniture manufacturing through Cradle-to-Cradle design principles. The chair uses exclusively mechanical fasteners (screws, clips, snap-fits) with clear access points for disassembly tools (Lee & Bony, 2008). All materials are selected for biological or technical nutrient compatibility, ensuring safe disassembly and material recovery (Lee & Bony, 2008).

Performance Results:

- Material content: 91% recycled materials including 2.5kg ocean-bound plastic (Sit Back & Relax, 2025).
- Recyclability: 94% recyclable at end-of-life through component separation (Herman Miller, 2007).
- Component durability: 12-year warranty with 15+ year expected lifespan (Sit Back & Relax, 2025).
- Take-back program: Systematic collection and refurbishment operations (Lee & Bony, 2008).

Textiles: Patagonia Worn Wear Program

Patagonia's Worn Wear initiative demonstrates systematic upcycling in apparel through integrated design for repair, resale, and material recovery. The program collects used products for repair, resale, or creative upcycling through the ReCrafted line where fabric panels are combined into new products.

Performance Results:

- Processing scale: Over 100,000 items repaired annually through industrial repair facility.
- Material diversion: 120 metric tonnes of textiles diverted from landfills in 2022.
- Product resale: 120,000 used items resold, extending product lifespans.
- Business integration: Circular operations coexist profitably with mainstream production. (Pearce, 2023)

III.3 Economic Viability and Scalability Evidence

DfD implementation demonstrates significant economic benefits through multiple value creation mechanisms. Building construction studies show DfD slabs achieve 70% cost savings over multiple building lifecycles compared to conventional demolition and reconstruction. Material reuse through resale proves more economically advantageous than purchasing new materials, while design for disassembly enables revenue generation through component sales and tax benefits from material donations. In battery disassembly operations, automation following DfD principles can achieve cost savings of up to \$190 million by 2040 compared to manual processes. Global business surveys indicate 73% of companies expect revenue gains from circular solutions including repair, refurbishment, and component recovery services. These economic benefits increase as material recovery scales and reuse markets develop. (CIRCuIT Project, 2025; Davis-Peccoud et al., 2025; Karaca et al., 2024; Melton, 2020)

Revenue Generation Mechanisms:

1. Component Resale: Direct component reuse captures highest material value.
2. Material Premiums: DfD-recovered materials command premium prices due to verified quality.
3. Service Integration: Product-as-a-Service models where manufacturers retain material ownership.

III.4. Environmental Impact Quantification

DfD implementation delivers substantial environmental benefits through systematic material recovery and lifecycle extension. Case studies demonstrate 38% embodied carbon reduction through comprehensive material reuse in temporary structures repurposed for permanent buildings. Danish office building research shows 15-21% carbon savings when concrete structures are designed for multiple reuse cycles. Steel manufacturing achieves 90% material recovery rates through systematic recycling processes. These documented benefits vary by industry sector, material type, and number of reuse cycles (Christovan & Bueno, 2025; Eberhardt et al., 2019; Guy & Ciarimboli, 2008).

Lifecycle Extension Impact:

1. Fairphone: Extending smartphone use from 3 to 7 years reduces carbon impact by 45% (Sánchez et al., 2024).
2. BMW i3: Battery module refurbishment enables 15-year lifecycles versus typical 8-year replacement (Hadgu, 2024).
3. Herman Miller: 15+ year chair lifecycles through design for durability and repair.
4. Patagonia: Industrial-scale repair extends garment lifecycles while maintaining quality (Pearce, 2023).

IV. DISCUSSION

IV.1. DfD as a Scalability Enabler

The findings demonstrate that DfD provides the systematic framework necessary to overcome traditional upcycling barriers. By standardizing materials and components, DfD creates predictable material streams enabling economies of scale essential for industrial implementation. The systematic approach enables automated disassembly processes operating at industrial speeds, with research showing 70% reduction in disassembly time compared to conventional methods.

Key Scalability Mechanisms:

1. Supply Chain Consistency: Standardized materials create reliable feedstock for systematic upcycling processes rather than one-off applications.
2. Quality Assurance: DfD principles ensure materials maintain structural integrity through disassembly, making them suitable for high-value upcycling.
3. Process Efficiency: Systematic design enables automated material recovery at industrial speeds.
4. Digital Integration: Modern DfD implementations leverage digital technologies including material passports, computer vision sorting, and AI-optimized processes.

IV.2. Cross-Industry Applicability

The benefits of DfD are consistent across diverse design industries, suggesting broad applicability of core principles while allowing sector-specific adaptation. Electronics benefit from modular architectures enabling component-level recovery, automotive

applications leverage material separation and battery refurbishment, furniture implementations focus on mechanical assembly and take-back programs, while textiles emphasize repair infrastructure and creative redesign.

This cross-sector consistency indicates that DfD represents a foundational approach rather than industry-specific solution, supporting the hypothesis that mainstream adoption could transform upcycling across design industries.

IV.3. Economic Transformation Model

The case studies demonstrate a clear economic transformation model where DfD implementation initially requires 3-5% additional upfront design costs but generates 12-18% lifecycle cost savings through material recovery and reduced waste disposal. At industrial scale, this creates competitive advantage through:

1. Cost Leadership: Reduced material costs through systematic recovery.
2. Revenue Diversification: New revenue streams from component and material sales.
3. Risk Mitigation: Reduced exposure to raw material price volatility.
4. Brand Premium: Enhanced sustainability credentials commanding price premiums.

IV.4. Limitations and Challenges

While the research demonstrates clear benefits, several challenges limit broader DfD adoption. Technical constraints include material degradation limits preventing indefinite cycling, regulatory gaps in secondary material certification, and infrastructure requirements for collection and processing systems. Economic barriers include higher initial investment requirements and market price sensitivity limiting premium pricing strategies.

Organizational challenges include workforce training requirements, procurement system modifications, and resistance to changing established manufacturing processes. These barriers suggest that policy support, industry collaboration, and technological development are necessary complements to DfD implementation.

V. CONCLUSION

This research demonstrates that Design for Disassembly provides a systematic pathway for transforming upcycling from small-scale artisanal practice to industrial-scale manufacturing. Through comprehensive analysis of cross-industry implementations, the findings support the hypothesis that mainstream DfD adoption enables scalable, economically viable upcycling with significant environmental benefits.

Key Conclusions:

1. Systematic Approach: DfD principles address core barriers limiting upcycling scalability by creating predictable material streams, ensuring quality consistency, and enabling process efficiency.
2. Cross-Industry Applicability: Successful implementations across electronics, automotive, furniture, and textile sectors demonstrate broad applicability of core DfD principles with sector-specific adaptations.
3. Economic Viability: DfD-enabled upcycling achieves cost competitiveness at industrial scale while generating additional revenue streams and reducing environmental impact.
4. Environmental Impact: Quantified benefits include higher material recovery rates, carbon footprint reduction, and significant lifecycle extension compared to traditional approaches.

Implications for Design Industries:

The research indicates that mainstream adoption of DfD principles could fundamentally transform design industry waste streams. With textiles alone generating 120 million tonnes of waste annually at 12% recovery rates, systematic DfD implementation achieving 90% recovery could divert over 100 million tonnes from waste streams while creating new economic value.

Future Research Directions:

Further research should examine optimal DfD implementation strategies for specific industry contexts, policy frameworks supporting DfD adoption, and technological developments enabling automated disassembly and material processing. Long-term studies tracking material quality degradation through multiple use cycles would provide crucial data for optimizing DfD systems. The transition from linear to circular manufacturing represents one of the most significant sustainability challenges facing design industries. This research demonstrates that Design for Disassembly provides a practical, economically viable pathway for achieving this transformation, enabling upcycling to evolve from niche craft practice to mainstream industrial strategy.

VI. REFERENCES

- [1] Ballester, M. (Director). (2021, January 28). 5.2.5 Fairphone Case Study – Recycling [Video recording].
- [2] BusinessWaste. (n.d.). Fashion Waste Facts and Statistics. <https://www.businesswaste.co.uk/waste-facts/fashion-waste-facts-and-statistics/>
- [3] Christovan, C., & Bueno, C. (2025). Embodied Carbon Reduction Through Material Reuse: A Case Study. CIB Conferences, 1(1), 354.
- [4] CIRCuIT Project. (2025). Futureproofing cities: Designing for disassembly and adaptability. In Circular Construction In Regenerative Cities: Insights from the CIRCuIT project. European Commission. [https://report.circuict-project.eu/assets/circuit-final-report_chapter3-\(1\).pdf](https://report.circuict-project.eu/assets/circuit-final-report_chapter3-(1).pdf)
- [5] Cook, G., & Jardim, E. (2017). Fairphone in Greenpeace Reports: Guide to Greener Electronics 2017 (p. 3). https://www.greenpeace.org/static/planet4-usa-stateless/2024/12/486ee4ba-gge2017_fairphone.pdf

[6] Crowther, P. (1999). Design for disassembly to extend service life and increase sustainability. *Durability of Building Materials and Components* 8: Service Life and Asset Management, 1983–1992.

[7] Davis-Peccoud, J., Gómez, F. J., Saenz, H., Srai, J. S., & Triantafyllidis, K. (2025, January). Circular Transformation of Industries: Unlocking Economic Value. World Economic Forum. https://reports.weforum.org/docs/WEF_Circular_Transformation_of_Industries_2025.pdf

[8] Deloitte. (2023). The Deloitte Global 2023 Gen Z & Millennial Survey (p. 38). <https://www.deloitte.com/nz/en/issues/work/gen-z-millennial-survey-2023.html>

[9] Eberhardt, L. C. M., Birgisdóttir, H., & Birkved, M. (2019). Life cycle assessment of a Danish office building designed for disassembly. *Building Research & Information*, 47(6), 666–680.

[10] Edelstein, S. (2015, May 5). BMW i3 Tear-Down Videos Show Electric Car's Radical Design. https://www.greencarreports.com/news/1098146_bmw-i3-tear-down-videos-show-electric-cars-radical-design

[11] Farouk, H., & Abdelsabour, I. (2019). (DFD) DESIGN FOR DISASSEMBLY FRAMEWORK: AN APPROACH TO ENHANCE THE DESIGN CONSTRUCTION PROCESS. *JES. Journal of Engineering Sciences*, 47(6), 883–898.

[12] Fibershed. (2024, December 12). U.S. Government Releases Landmark Report on Textile Waste and Fast Fashion's Environmental Toll. <https://fibershed.org/2024/12/12/u-s-government-releases-landmark-report-on-textile-waste-and-fast-fashions-environmental-toll/>

[13] Forrest, A., Hilton, M., Ballinger, A., & Whittaker, D. (2017). Circular economy opportunities in the furniture sector. European Environmental Bureau: Brussels, Belgium.

[14] Fortune Business Insights. (2025, December 8). Upcycled Fashion Market Size, Share & Industry Analysis, By Type (Apparel, Accessories, Footwear, and Others), By End-Use (Women, Men, Unisex, and Others), Distribution Channel (Offline and Online), and Regional Forecast, 2024-2032. <https://www.fortunebusinessinsights.com/upcycled-fashion-market-111476>

[15] Guruge, K., Waidyasekara, A., Jayasena, H., & Manewa, R. M. A. S. (2024). Unveiling the potential of design for deconstruction in the circular economy, 1101–1111. <https://doi.org/10.31705/WCS.2024.87>

[16] Guy, B., & Ciarimboli, N. (2008). DfD: design for disassembly in the built environment: A guide to closed-loop design and building. Hamer Center.

[17] Hadgu, A. (2024). Mechanical assembly of battery module for BMW i3.

[18] Herman Miller. (2007). AERON® CHAIR. https://www.designcabinet.de/media/pdf/98/d8/b7/classic_aeron_chairs_eps_en-gbomAQn9T6oeNeU.pdf

[19] Karaca, F., Tleukan, A., Awan, H. H., Askar, R., Çidik, M. S., Iskakova, A., Turkyilmaz, A., Laudal, T., Durdyev, S., Varol, H. A., Salles, A., Bajäre, D., Tambovceva, T., Zsembinszki, G., Puma, G. C. C., Kapsalyamova, Z., Kripa, D., Azhgaliyeva, D., Nano, X., ... Bragança, L. (2024). Stakeholder perspectives on the costs and benefits of circular construction. *Scientific Reports*, 14(1), 30039. <https://doi.org/10.1038/s41598-024-81741-z>

[20] Lee, D., & Bony, L. J. (2008). Cradle-to-cradle design at Herman Miller: Moving toward environmental sustainability. *HBS Case*, 607–003.

[21] Light House Sustainability Society. (2021). Vienna House Innovative Affordable Housing Demonstration Project: Design for Disassembly for Residential Construction (p. 35). BC Housing. <https://www.bchousing.org/publications/Design-for-Disassembly-for-Residential-Construction.pdf>

[22] Melton, P. (2020). Buildings that last: Design for adaptability, deconstruction and reuse. The American Institute of Architects. https://www.aia.org/sites/default/files/2024-11/AIA_Design_Deconstruction_Adaptability_Reuse.pdf

[23] Pearce, P. (2023). Scale Up This? Improving Scalability and Viability in Upcycling Design [PhD Thesis]. Concordia University.

[24] Richardson, M. (2011). Design for reuse: Integrating upcycling into industrial design practice. International Conference on Remanufacturing, 1–13.

[25] Sajdeh, R., Martinez-Pardo, C., Meyer zum Felde, A., Lange, T., Tieri, E., & Evans, E. (2025). Spinning Textile Waste into Value. Boston Consulting Group. <https://www.bcg.com/publications/2025/spinning-textile-waste-into-value>

[26] Sánchez, D., Baur, S.-J., & Eguren, L. (2024). Life Cycle Assessment of the Fairphone 5 (p. 83). Fraunhofer IZM.

[27] Singh, J. (2022). The Sustainability Potential of Upcycling. *Sustainability*, 14, 5989. <https://doi.org/10.3390/su14105989>

[28] Sit Back & Relax. (2025, June 6). Is the Herman Miller Aeron worth it? <https://www.sitbackandrelax.com.au/blogs/news/is-the-herman-miller-aeron-worth-it>

[29] Sloan, J. (2014, April 23). The making of the BMW i3. <https://www.compositesworld.com/articles/the-making-of-the-bmw-i3>

[30] Wagaw, T., & Babu, K. M. (2023). Textile Waste Recycling: A Need for a Stringent Paradigm Shift. *AATCC Journal of Research*, 10(6), 376–385. <https://doi.org/10.1177/24723444231188342>