

Smart Stimuli-Responsive Nanoparticles For Targeted Drug Delivery: Design Strategies, Mechanisms, Clinical Progress, And Future Perspectives

Akanksha Anil Mithari, Mayuri Bhagvan More

, Savita Balavant Lavhate , Vaishnavi Namdev Korane , Vighnesh Sunil Kumbhar

student

Ashokrao Mane College of Pharmacy Peth Vadgaon

Abstract

Targeted drug delivery has surfaced as a promising undertaking to address the drawbacks of traditional pharmaceutical treatments, such as limited bioavailability, nonspecific distribution, and systemic toxicity. In this regard, nanotechnology-based delivery systems have drawn significant interest due to their capacity to enhance therapeutic effectiveness and safety. Among these systems, intelligent stimuli-responsive nanoparticles constitute a sophisticated category of drug carriers that can release therapeutic agents in a controlled manner in response to particular physiological cues or external stimuli. Stimuli-responsive nanoparticles are designed systems that experience physicochemical or structural alterations when exposed to specific triggers, facilitating targeted and on-demand drug release. These stimuli can be categorized into internal factors, like pH changes, enzymatic activity, and redox gradients, and external factors, such as temperature, light, magnetic fields, and ultrasound. The mechanisms governing drug release involve processes like polymer degradation, bond breaking, swelling, or phase transitions, which enable precise control over drug release rates. These advanced nanocarriers have demonstrated significant promise in targeted remedies especially for cancer, inflammatory conditions, and central nervous system disorders.

Despite promising results in preclinical studies, the advancement of stimuli-responsive nanoparticles into clinical applications is restricted. Significant obstacles include challenges in large-scale production, consistency, prolonged stability, compatibility with biological systems, and regulatory hurdles. At present, only a limited number of stimuli-responsive nanomedicines have undergone clinical assessment, underscoring the necessity for additional refinement and confirmation. This review offers an extensive summary of the design principles, categories, and operational mechanisms of intelligent stimuli-responsive nanoparticles, examines recent progress and clinical developments, and emphasizes crucial challenges and future prospects for their effective implementation in clinical settings.

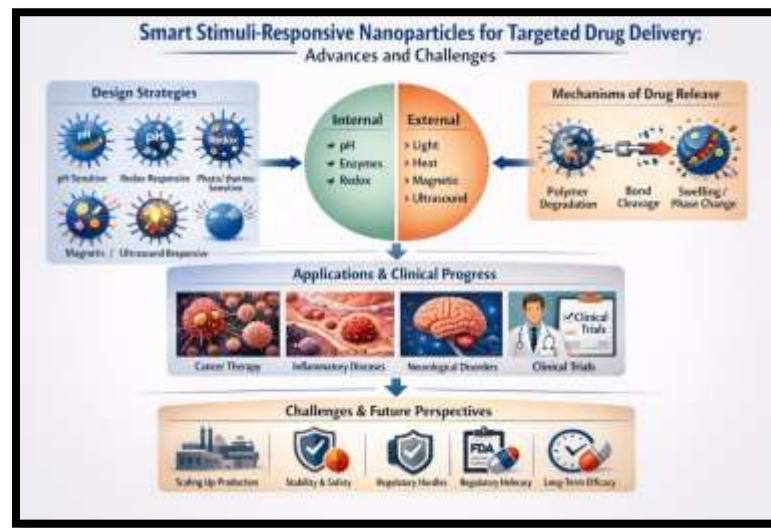


Fig No.1 – Abstract

Keywords

1.Stimuli-responsive nanoparticles, 2.smart drug delivery systems, 3.targeted drug delivery, 4. Nanocarriers, 5.controlled drug release, 6.precision medicine, 7.nanomedicine, 8.polymeric nanoparticles

3. Introduction

Despite significant progress in pharmaceutical sciences, conventional drug delivery systems continue to present major therapeutic challenges. Traditional dosage forms such as tablets, capsules, and injections often exhibit poor drug solubility, limited stability, low bioavailability, and rapid systemic elimination, leading to inadequate therapeutic concentrations at the target site [1]. In addition, nonspecific drug distribution throughout the body frequently results in dose-dependent toxicity and undesirable side effects, particularly in the treatment of diseases requiring long-term therapy, such as cancer, autoimmune disorders, and neurological conditions [2]. The inability of conventional delivery systems to distinguish between healthy and diseased tissues further compromises therapeutic efficacy and patient safety.

Another critical limitation of conventional drug delivery lies in the lack of control over drug release profiles. Many drugs exhibit narrow therapeutic windows, and fluctuations in plasma drug concentration can lead to either subtherapeutic effects or toxicity [3]. Frequent dosing regimens required to maintain therapeutic levels often reduce patient adherence and increase the risk of adverse reactions. Consequently, there is a growing need for advanced drug delivery systems capable of maintaining sustained and controlled drug release while ensuring site-specific targeting [4].

Targeted and controlled drug delivery strategies have emerged as effective approaches to overcome these limitations. Targeted delivery aims to enhance drug accumulation at specific pathological sites by exploiting anatomical, physiological, or molecular differences between diseased and normal tissues [5]. Controlled release systems further improve therapeutic outcomes by modulating drug release kinetics, thereby prolonging drug action and reducing dosing frequency [6]. These strategies are particularly beneficial in diseases characterized by unique microenvironmental features, such as acidic pH, elevated enzyme levels, or altered redox conditions, which can be exploited for selective drug activation [7].

The advent of nanotechnology has significantly transformed targeted drug delivery by enabling the development of nanoscale carriers with improved pharmacokinetic and pharmacodynamic properties [8]. Nanoparticles offer several advantages, including high surface area, tunable size, surface functionalization capability, and the ability to encapsulate both hydrophilic and hydrophobic drugs [9]. Among various nanocarrier systems, smart stimuli-responsive nanoparticles have gained considerable attention due to their ability to respond dynamically to specific internal or external stimuli and release drugs in a controlled and site-specific manner [10].

Stimuli-responsive nanoparticles are engineered systems that undergo reversible or irreversible physicochemical changes upon exposure to defined triggers such as pH variations, enzymatic activity, redox potential, temperature changes, light irradiation, magnetic fields, or ultrasound [11]. Internal stimuli-responsive systems exploit pathological microenvironmental conditions, such as the acidic tumor milieu or elevated intracellular glutathione levels, while external stimuli-responsive systems allow precise spatiotemporal control through externally applied triggers [12]. These smart

nanocarriers enable enhanced therapeutic precision, reduced systemic toxicity, and improved treatment outcomes compared to conventional delivery systems [13].

The aim of this review is to critically analyze recent advances in smart stimuli-responsive nanoparticles for targeted drug delivery. The scope of this article encompasses the classification of stimuli-responsive nanocarriers, underlying mechanisms of stimulus-triggered drug release, materials employed in nanoparticle design, and their applications in various disease conditions. Furthermore, current challenges related to scalability, biocompatibility, regulatory approval, and clinical translation are discussed. Finally, future perspectives and emerging opportunities for innovation and patent development in stimuli-responsive nanomedicine are highlighted to guide future research in this rapidly evolving field.

4. Overview of Nanoparticles in Drug Delivery

Nanoparticles have emerged as a versatile and effective platform for drug delivery due to their nanoscale size, tunable physicochemical properties, and ability to enhance therapeutic performance. Typically ranging from 1 to 1000 nm in size, nanoparticles can encapsulate, adsorb, or conjugate drugs, enabling improved pharmacokinetics, targeted delivery, and controlled drug release [14]. The ability to modify surface characteristics and incorporate targeting ligands further enhances their specificity toward diseased tissues, making them particularly valuable in advanced drug delivery systems [15].

4.1 Types of Nanoparticles

4.1.1 Polymeric Nanoparticles

Polymeric nanoparticles are among the most widely studied nanocarriers due to their biocompatibility, biodegradability, and flexibility in design [16]. These nanoparticles are typically prepared using natural polymers such as chitosan and alginate or synthetic polymers such as poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and polycaprolactone [17]. Drugs can be incorporated within the polymer matrix or adsorbed onto the surface, allowing sustained and controlled drug release. Polymeric nanoparticles are extensively explored for stimuli-responsive drug delivery, as polymers can be engineered to respond to pH, temperature, enzymes, or redox conditions [18].

4.1.2 Liposomes

Liposomes are spherical vesicles composed of one or more phospholipid bilayers surrounding an aqueous core [19]. Their unique structure allows encapsulation of both hydrophilic drugs (in the aqueous core) and hydrophobic drugs (within the lipid bilayer). Liposomes exhibit excellent biocompatibility and reduced immunogenicity, making them suitable for clinical applications [20]. Surface modification with PEG (PEGylation) enhances circulation time, while ligand attachment enables active targeting. Several liposomal formulations are clinically approved, highlighting their translational potential [21].

4.1.3 Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are composed of solid lipids stabilized by surfactants and represent an alternative to polymeric nanoparticles [22]. SLNs combine the advantages of lipid-based systems and nanoparticles, offering improved drug stability, controlled release, and low toxicity [23]. They are particularly suitable for lipophilic drugs and have been investigated for oral, topical, and parenteral drug delivery. However, issues such as limited drug loading and potential drug expulsion during storage remain challenges [24].

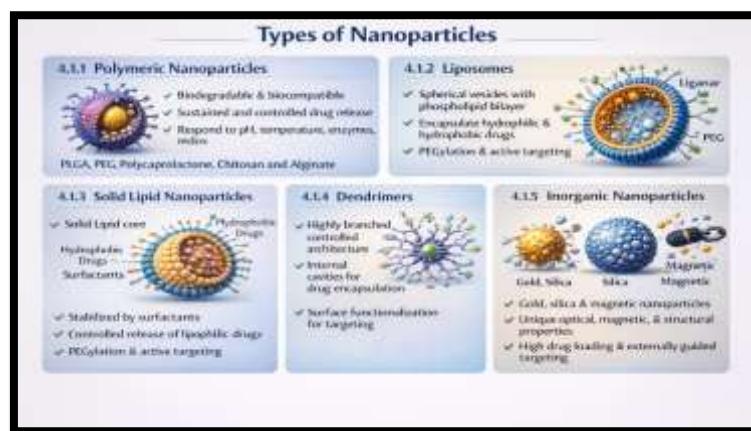


Fig No 2 - Types of Nanoparticles

4.1.4 Dendrimers

Dendrimers are highly branched, tree-like macromolecules with well-defined size, shape, and surface functionality [25]. Their internal cavities allow drug encapsulation, while surface functional groups enable drug conjugation or targeting ligand attachment. Due to their precise molecular architecture, dendrimers offer excellent control over drug loading and release [26]. However, concerns related to toxicity and cost of synthesis have limited their widespread clinical application [27].

4.1.5 Inorganic Nanoparticles

Inorganic nanoparticles, including gold, silica, and magnetic nanoparticles, possess unique optical, magnetic, and structural properties that make them suitable for targeted and stimuli-responsive drug delivery [28]. Gold nanoparticles are widely used due to their ease of synthesis and surface functionalization, while mesoporous silica nanoparticles offer high drug loading capacity [29]. Magnetic nanoparticles enable externally guided targeting and controlled drug release using magnetic fields, particularly in cancer therapy [30].

4.2 Advantages of Nanoparticle-Based Drug Delivery

4.2.1 Enhanced Bioavailability

Nanoparticles enhance drug bioavailability by improving solubility, protecting drugs from degradation, and facilitating transport across biological barriers [31]. This is particularly beneficial for poorly water-soluble drugs and macromolecules such as peptides and proteins.

4.2.2 Reduced Toxicity

Targeted delivery and controlled release reduce drug exposure to healthy tissues, thereby minimizing systemic toxicity and adverse effects [32]. Nanoparticles can selectively accumulate in diseased tissues through passive or active targeting mechanisms, improving therapeutic safety profiles.

4.2.3 Improved Patient Compliance

Sustained and controlled drug release achieved through nanoparticle-based systems reduces dosing frequency and enhances patient adherence to therapy [33]. Non-invasive delivery routes and reduced side effects further contribute to improved patient compliance.

5. Concept of Stimuli-Responsive Drug Delivery Systems

Stimuli-responsive drug delivery systems, often referred to as smart drug delivery systems, represent an advanced class of delivery platforms designed to release therapeutic agents in response to specific physicochemical or biological triggers [34]. These systems have been developed to overcome the limitations of conventional drug delivery approaches, such as nonspecific drug distribution, uncontrolled release, and dose-related toxicity. By enabling site-specific and on-demand drug release, stimuli-responsive systems significantly enhance therapeutic efficacy while minimizing adverse effects [35]. Their application is particularly relevant in the treatment of complex diseases, including cancer, inflammatory disorders, and neurological conditions, where precise control over drug localization and release is essential.

5.1 Definition of Stimuli-Responsive Drug Delivery Systems

Stimuli-responsive drug delivery systems are defined as engineered materials or nanocarriers that undergo predictable and reversible or irreversible physicochemical changes upon exposure to specific internal or external stimuli, resulting in controlled drug release at the target site [36]. These systems are typically fabricated using polymers, lipids, or hybrid materials that possess stimulus-sensitive functional groups or linkages. The responsiveness of these systems allows them to remain stable under normal physiological conditions while becoming activated in response to disease-specific signals or externally applied triggers [37]. As a result, stimuli-responsive systems provide enhanced selectivity and therapeutic precision compared to conventional delivery systems.

5.2 Mechanisms of Stimulus-Triggered Drug Release

The mechanism of stimulus-triggered drug release depends on the nature of the stimulus and the structural design of the delivery system. Common release mechanisms include cleavage of stimulus-sensitive chemical bonds, degradation of carrier matrices, polymer swelling or shrinking, phase transitions, and changes in permeability or solubility [38]. Upon

exposure to the appropriate stimulus, these physicochemical transformations destabilize the carrier structure, leading to the release of the encapsulated or conjugated drug [39].

In polymer-based stimuli-responsive nanoparticles, drug release is often governed by changes in polymer conformation or ionization state [40]. For example, pH-responsive polymers may undergo protonation or deprotonation in acidic or basic environments, resulting in polymer swelling and accelerated drug diffusion

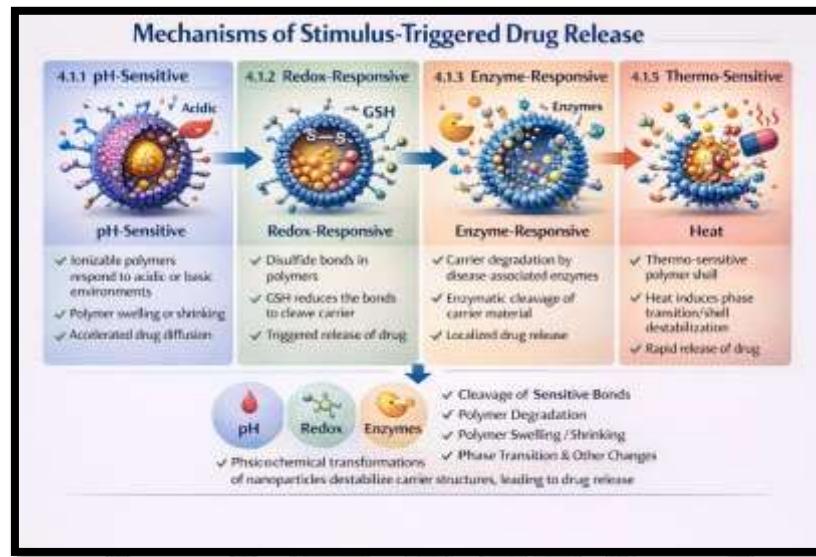


Fig No.3 - Mechanisms of Stimulus-Triggered Drug Release

[41]. Redox-responsive systems exploit intracellular redox gradients, particularly elevated glutathione concentrations, to cleave disulfide bonds and trigger intracellular drug release [42]. Enzyme-responsive systems rely on disease-associated enzymes to selectively degrade carrier materials, enabling localized drug release in pathological tissues [43]. These mechanisms collectively improve drug accumulation at target sites while reducing systemic exposure.

5.3 Internal versus External Stimuli

Based on the source of activation, stimuli-responsive drug delivery systems are broadly classified into **internal (endogenous)** and **external (exogenous)** stimuli-responsive systems [44].

Internal stimuli originate from the pathological microenvironment and include variations in pH, enzyme expression, redox potential, hypoxia, and ionic strength [45]. Such systems are particularly attractive because they allow autonomous activation without external intervention. For instance, tumor tissues exhibit acidic pH, elevated levels of reducing agents, and overexpression of specific enzymes, which can be exploited to achieve selective drug release within cancer cells [46]. Internal stimuli-responsive systems therefore offer high specificity and reduced risk of off-target effects.

External stimuli-responsive systems are activated by triggers applied from outside the body, such as temperature, light, magnetic fields, and ultrasound [47]. These systems provide superior spatiotemporal control over drug release, allowing clinicians to modulate drug delivery in a non-invasive and adjustable manner [48]. Temperature-responsive systems are commonly used in hyperthermia-assisted cancer therapy, while light-responsive and magnetic-responsive systems enable precise control over drug release at specific sites [49]. However, limitations such as tissue penetration depth and the need for specialized equipment must be considered for their clinical translation [50].

Overall, stimuli-responsive drug delivery systems represent a promising strategy for achieving precise, controlled, and safe drug delivery. Continued advancements in material science, nanotechnology, and biomedical engineering are expected to further enhance their translational potential and expand their applications in modern pharmaceutical therapy [51].

6. Classification of Stimuli-Responsive Nanoparticles

Stimuli-responsive nanoparticles are broadly classified based on the origin of the triggering stimulus into **internal (endogenous)** and **external (exogenous)** stimuli-responsive systems. This classification is crucial for understanding their design principles, mechanisms of action, and suitability for specific therapeutic applications [52].

6.1 Internal Stimuli-Responsive Systems

Internal stimuli-responsive nanoparticles exploit the unique physicochemical characteristics of pathological microenvironments to trigger site-specific drug release without external intervention. These systems offer high selectivity and autonomous activation, making them particularly attractive for in vivo drug delivery applications [53].

6.1.1 pH-Responsive Nanoparticles

pH-responsive nanoparticles are among the most extensively investigated internal stimuli-responsive systems due to the pronounced pH differences between normal tissues and pathological sites. Tumor tissues, inflamed regions, and intracellular compartments such as endosomes and lysosomes exhibit acidic pH compared to normal physiological conditions [54].

These nanoparticles are designed to remain stable at physiological pH (~7.4) but undergo structural changes or degradation under acidic conditions, leading to drug release at the target site [55]. pH-responsive behavior is commonly achieved using acid-sensitive polymers or linkers that undergo protonation, swelling, or bond cleavage in acidic environments [56].

Acid-sensitive polymers such as poly(histidine), poly(β -amino esters), and hydrazone-linked polymers have been widely employed for tumor-targeted drug delivery [57]. These systems enhance intracellular drug release and improve therapeutic efficacy while minimizing systemic toxicity [58].

6.1.2 Enzyme-Responsive Nanoparticles

Enzyme-responsive nanoparticles are designed to respond to disease-associated enzymes that are overexpressed in specific pathological conditions, such as cancer, inflammation, and infections [59]. Enzymes such as matrix metalloproteinases (MMPs), cathepsins, phospholipases, and proteases are commonly exploited as triggers for selective drug release [60].

These nanoparticles typically incorporate enzyme-cleavable peptide sequences or polymer backbones that undergo degradation upon enzymatic action, resulting in drug release [61]. Prodrug strategies are also employed, wherein the drug remains inactive until enzymatic cleavage converts it into its active form at the target site [62].

Enzyme-responsive systems offer high specificity and reduced off-target effects; however, variability in enzyme expression among patients may influence therapeutic outcomes [63].

6.1.3 Redox-Responsive Nanoparticles

Redox-responsive nanoparticles exploit the redox potential differences between extracellular and intracellular environments. Intracellular compartments, particularly cancer cells, exhibit significantly higher concentrations of reducing agents such as glutathione (GSH) compared to extracellular fluids [64].

These systems commonly utilize disulfide bonds within the polymer backbone or as linkers between the drug and carrier. Upon exposure to high intracellular GSH levels, disulfide bonds are cleaved, triggering rapid drug release [65]. Redox-responsive nanoparticles have demonstrated enhanced intracellular drug delivery, particularly for anticancer and gene therapies [66].

6.2 External Stimuli-Responsive Systems

External stimuli-responsive nanoparticles are activated by externally applied physical triggers, allowing precise spatiotemporal control over drug release. These systems offer adjustable and on-demand drug delivery, although their clinical application may require specialized equipment [67].

6.2.1 Temperature-Responsive Nanoparticles

Temperature-responsive nanoparticles utilize thermosensitive polymers that undergo reversible phase transitions at specific temperatures [68]. Polymers such as poly(N-isopropylacrylamide) (PNIPAM) exhibit a lower critical solution temperature (LCST), above which polymer collapse triggers drug release [69].

These systems are particularly useful in hyperthermia-assisted cancer therapy, where localized temperature elevation enhances drug release at tumor sites while sparing healthy tissues [70].

6.2.2 Light-Responsive Nanoparticles

Light-responsive nanoparticles enable controlled drug release upon exposure to specific wavelengths of light, including ultraviolet (UV), visible, and near-infrared (NIR) light [71]. NIR light is especially advantageous due to its deeper tissue penetration and reduced phototoxicity [72].

These systems are widely applied in photodynamic therapy (PDT) and photothermal therapy (PTT), where light activation induces reactive oxygen species generation or localized heat, leading to tumor cell death and drug release [73].

6.2.3 Magnetic-Responsive Nanoparticles.

Magnetic-responsive nanoparticles, typically composed of iron oxide or other magnetic materials, enable targeted drug delivery under the influence of external magnetic fields [74]. Magnetic targeting enhances nanoparticle accumulation at desired sites, while alternating magnetic fields can trigger localized heating and drug release [75].

These systems have shown promising results in cancer therapy and localized drug delivery; however, challenges related to magnetic field strength and tissue penetration remain [76].

6.2.4 Ultrasound-Responsive Nanoparticles

Ultrasound-responsive nanoparticles utilize acoustic energy to trigger drug release through mechanisms such as cavitation, enhanced permeability, and carrier disruption [77]. Ultrasound offers non-invasive, deep tissue penetration and real-time control over drug release [78].

These systems have been explored for targeted cancer therapy, gene delivery, and transdermal drug delivery, demonstrating improved therapeutic outcomes and reduced systemic toxicity [79].

7. Dual and Multi-Stimuli-Responsive Nanoparticles

Dual- and multi-stimuli-responsive nanoparticles (NPs) are a class of “smart” nanocarriers engineered to respond to two or more distinct triggers — typically a combination of endogenous (e.g., pH, redox, enzymes) and/or exogenous (e.g., temperature, light, magnetic field) stimuli — to achieve more precise spatiotemporal control over drug release than single-stimulus systems [80,81]. By integrating multiple responsiveness mechanisms within a single platform, these systems can increase selectivity (reducing off-target release), improve payload stability during circulation, and provide sequential or synergistic release behaviors that better address the complex microenvironment of diseases such as cancer and infection [82–84].

7.1 pH + Temperature Dual-Responsive Systems

pH + temperature dual responsiveness is widely exploited because many pathological sites (e.g., solid tumors, inflamed tissues) display acidic microenvironments and can be heated locally (e.g., by hyperthermia or photothermal agents) to produce an additional trigger for release. Typical designs couple an acid-sensitive moiety (e.g., acid-labile hydrazone linkers, ionizable tertiary amines) with a thermo-sensitive polymer shell such as poly(N-isopropylacrylamide) (PNIPAM) or PNIPAM-copolymers [82,85]. Under physiological pH and normal temperature the carrier remains stable; exposure to mildly acidic pH causes protonation/swelling and weakens drug-carrier interactions, while a local temperature increase (above the polymer’s LCST) induces polymer collapse or increased permeability — together producing a rapid, synergistic release at the target site. Experimental studies have demonstrated improved tumor uptake and heat-triggered burst release with pH/thermo dual systems, leading to enhanced cytotoxicity *in vitro* and tumour suppression *in vivo* compared with single-stimulus counterparts [15,82,86].

7.2 pH + Redox Dual-Responsive Systems

pH + redox dual-responsive NPs exploit two hallmark intracellular/tumor features: acidic endosomal/lysosomal compartments and elevated intracellular glutathione (GSH) concentrations. Architectures commonly include (a) acid-labile linkers or pH-sensitive polymers that facilitate endosomal escape or de-shielding in acidic compartments and (b) disulfide or other reduction-sensitive bonds that undergo rapid cleavage in the GSH-rich cytosol, releasing drug cargo intracellularly [84,87]. This sequential activation (pH-driven uptake/de-shielding followed by redox-driven payload release) reduces premature drug leakage in blood and improves intracellular bioavailability. Recent examples include mesoporous silica and polymeric micelle systems designed with acid-responsive shell layers and disulfide-linked prodrugs or crosslinks; these show low systemic release but fast cytosolic drug liberation and superior antitumor efficacy in resistant cancer models [83,88].

7.3 Advantages over Single-Stimulus Systems

Dual/multi-stimuli designs confer several advantages:

- **Higher specificity and lower off-target release:** Requiring two conditions to be met (e.g., acidic pH *and* high GSH) reduces the likelihood of accidental activation in healthy tissues.
- **Sequential or staged delivery:** Systems can be engineered for stepwise activation (e.g., pH triggers nanoparticle destabilization → redox triggers drug cleavage), allowing intracellular targeting and improved pharmacodynamics.
- **Enhanced therapeutic window:** Reduced premature leakage and increased intracellular payload concentration improve efficacy while lowering systemic toxicity.
- **Synergistic triggers:** Combining stimuli (e.g., heat + pH) can produce supra-additive release kinetics useful for combination therapies (chemotherapy + hyperthermia/photothermal effects) [81–84,89].

7.4 Representative Examples from Recent Studies

- **pH/temperature (polymer-coated mesoporous silica):** PNIPAM-coated mesoporous silica nanoparticles with pH-sensitive gatekeepers exhibited reversible swelling/collapse behavior and temperature-modulated drug release; tumor models treated with combined hyperthermia showed enhanced DOX release and tumor inhibition. (example experimental study). [82,85]
- **pH/redox (polyprodrug micelles):** Mixed polyprodrug micelles containing hydrazone (pH-labile) and disulfide (redox-labile) linkages provided stability during circulation and rapid, intracellular release of chemotherapeutics, improving outcomes in drug-resistant breast cancer models. [84,87]
- **Multi-stimuli magnetic + pH + redox platforms:** Magnetic core–shell NPs functionalized with pH-sensitive shells and disulfide crosslinks enabled magnetic accumulation, pH-induced de-shielding, and GSH-triggered release — demonstrating targeted accumulation and potent antitumor activity with lower systemic toxicity. [88,89]

7.5 Challenges and Design Considerations

While dual/multi-stimuli systems offer compelling benefits, they introduce added complexity in synthesis, scale-up, characterization, and regulatory approval. Key considerations include ensuring reproducible and tunable responsiveness (avoid batch-to-batch variability), minimizing non-specific activation, confirming biocompatibility of degradation products, and validating the trigger thresholds in clinically relevant models (human tumor heterogeneity, variable GSH levels) [80,81,83]. Rational design guided by quantitative assessments of local stimulus amplitudes (pH gradients, GSH concentrations, achievable temperature rises, light penetration) is essential to translate multi-stimuli carriers toward clinical evaluation.

8. Materials Used in Smart Stimuli-Responsive Nanoparticles

The performance of stimuli-responsive nanoparticles (NPs) is fundamentally governed by the materials from which they are constructed. Material selection determines responsiveness thresholds, biodegradability, drug loading/release characteristics, surface chemistry for targeting, and biocompatibility. Materials used for smart NPs broadly fall into three classes: natural polymers, synthetic polymers, and hybrid/functionalized materials. Each class offers unique advantages and constraints for designing pH-, enzyme-, redox-, thermal-, light- or magnetically-responsive systems.

8.1 Natural polymers

Natural polymers are attractive building blocks for stimuli-responsive NPs because of their intrinsic biocompatibility, biodegradability, and often favorable biological interactions. Two widely used examples are **chitosan** and **alginate**.

8.1.1 Chitosan

Chitosan is a linear cationic polysaccharide derived from chitin and is notable for its mucoadhesive properties, biodegradability, and availability of primary amino groups for chemical modification [90]. The protonatable amine groups ($pK_a \approx 6.0–6.5$) make chitosan inherently pH-responsive: it is soluble and swollen in acidic media (protonated amines) and collapses or precipitates at neutral/basic pH [90]. This behavior has been exploited for acid-triggered drug release in tumor microenvironments or endo/lysosomal compartments. Chitosan can be chemically modified (e.g., PEGylation, thiolation, or grafting of hydrophobic moieties) to tune solubility, stability, and stimulus thresholds, and to introduce additional responsiveness such as redox-sensitivity via disulfide linkages [90,95]. Limitations include variable molecular

weight/distribution from natural sources, potential immunogenic contaminants if not purified, and relatively rapid enzymatic degradation in some biological milieus.

8.1.2 Alginate

Alginate is an anionic, block-copolymers polysaccharide composed of mannuronic and guluronic acid residues with excellent gelation properties in the presence of divalent cations (e.g., Ca^{2+}) [91]. Alginate gels are widely used for encapsulation and controlled release; pH and ionic strength modulate gel porosity and drug diffusion, allowing environment-sensitive release profiles [91]. Alginate can be combined with pH-sensitive coatings or ionically crosslinked with labile crosslinkers to produce carriers that swell and release payloads in acidic tumor or inflamed microenvironments. Drawbacks include limited mechanical stability of pure alginate gels under physiological ionic exchange and difficulty in achieving precise, rapid on-demand release without additional functionalization.

8.2 Synthetic polymers

Synthetic polymers provide precise control over molecular weight, architecture, and functional group placement, enabling tunable stimulus responses and improved reproducibility for clinical translation. Important examples include **PLGA**, **PEG**, and **PNIPAM**.

8.2.1 PLGA (poly(lactic-co-glycolic acid))

PLGA is a biodegradable aliphatic polyester widely used for controlled-release particles owing to its established safety profile and FDA approvals for various formulations [92]. PLGA degradation occurs via hydrolysis of ester bonds, producing lactic and glycolic acids; degradation rate is tunable by copolymer ratio, molecular weight and end-group chemistry. While PLGA itself is not inherently stimuli-responsive (beyond hydrolytic degradation), it is readily engineered into responsive systems by: (a) incorporating acid-labile linkers into the polymer backbone; (b) blending with pH-sensitive polymers to create composite shells; or (c) surface functionalization with ligands that expose payloads under specific stimuli [92,96]. PLGA NPs exhibit excellent drug encapsulation for hydrophobic drugs but can suffer from initial burst release and acidification of microenvironment during degradation—factors to manage in stimuli-design.

8.2.2 PEG (polyethylene glycol)

PEG is an amphiphilic, hydrophilic polymer widely used to sterically stabilize NPs and extend systemic circulation by reducing protein adsorption and opsonization (PEGylation) [93]. PEG chains also serve as "stealth" shields that can be engineered to be removable under specific stimuli (e.g., cleavable PEG via pH- or enzyme-labile linkers) to expose targeting ligands or allow triggered cellular uptake [93,97]. PEGylation improves colloidal stability and reduces immunogenicity but may reduce cellular uptake unless de-shielded; anti-PEG antibodies and accelerated blood clearance in repeat dosing are reported considerations for clinical design.

8.2.3 PNIPAM (poly(N-isopropylacrylamide))

PNIPAM is a thermo-responsive polymer exhibiting a sharp coil-to-globule transition at its lower critical solution temperature (LCST, typically $\sim 32^\circ\text{C}$), which can be adjusted through copolymerization [69,94]. Above the LCST PNIPAM becomes hydrophobic and collapses, enabling temperature-triggered release strategies (e.g., hyperthermia-assisted burst release). PNIPAM is frequently employed as an outer shell or gating element in composite NPs; however, concerns include limited biodegradability and potential accumulation unless copolymerized with degradable segments or used in recoverable/localized devices [69].

8.3 Hybrid and functionalized materials

Hybrid and functionalized materials combine the benefits of natural and synthetic polymers and incorporate inorganic components, responsive linkers, targeting ligands, or stimuli-sensing moieties to produce multifunctional NPs.

8.3.1 Polymer-inorganic hybrids

Core-shell designs combining magnetic iron oxide or gold cores with polymeric shells enable magnetic targeting, photothermal conversion, and stimulus-triggered release (e.g., heat generated by magnetic induction or NIR photothermal effects that trigger polymer collapse or bond cleavage) [76,73]. Mesoporous silica cores functionalized with responsive polymer "gatekeepers" afford high drug loading with controlled, stimulus-gated release [16,83]. Hybridization allows orthogonal control (e.g., magnetic guidance + pH/redox release).

8.3.2 Stimulus-cleavable linkers and prodrug strategies

Incorporation of stimulus-cleavable bonds (hydrazone for acid, disulfide for redox, enzyme-cleavable peptides) is a common strategy to convert inert carriers or prodrugs into responsive systems. Prodrug conjugation via cleavable linkers

can minimize systemic toxicity and ensure intracellular activation upon encountering the intended stimulus [84,62]. Rational selection of linker chemistry enables tuning of release kinetics and specificity.

8.3.3 Surface functionalization and targeting ligands

Surface modification with targeting moieties (antibodies, peptides, aptamers) and polyethylene glycol or zwitterionic polymers balances targeting efficiency and circulation time. "Smart" surface architectures often employ detachable shields (e.g., PEG with pH-labile bonds) that detach in tumors to expose targeting ligands only at the disease site, improving specificity and minimizing off-target binding [93,97].

8.3.4 Composite and multi-responsive matrices

Combining several responsive elements (e.g., pH-sensitive shell + disulfide crosslinks + photothermal core) yields multi-responsive platforms capable of sequential activation and synergistic therapeutic modalities (chemotherapy + photothermal or immunomodulation). Design challenges include synthetic complexity, reproducibility, scalability, and careful assessment of degradation products and long-term safety [80,81,89].

Design considerations and translational remarks

Material selection must reconcile responsiveness with biocompatibility, manufacturability, and regulatory acceptability. Natural polymers offer biocompatibility but variable batch quality; synthetic polymers offer tunability but may require biodegradability optimization. Hybrid systems expand functionality but add complexity for scale-up and characterization. For clinical translation, materials with prior regulatory acceptance (e.g., PLGA, PEG) provide advantages when combined with novel responsive chemistries that are themselves biocompatible and metabolizable [92,93,96]. Thorough physicochemical characterization, reproducible synthetic routes, and robust *in vivo* toxicity/safety data are essential to move materials from bench to bedside.

9. Applications in Targeted Drug Delivery

Stimuli-responsive nanoparticles (NPs) have been applied across a broad spectrum of therapeutic areas where precise spatial and temporal control of drug release confers clear clinical advantages. Below we discuss major application domains — cancer, central nervous system (CNS) disorders, inflammatory diseases, infectious diseases, and gene/protein delivery — highlighting rationale, representative strategies, outcomes, and translational considerations.

9.1 Cancer Therapy

Cancer remains the most extensively investigated application for stimuli-responsive NPs because tumors present multiple exploitable microenvironmental differences (acidic pH, hypoxia, elevated reductive potential, overexpressed enzymes) and because localized external triggers (heat, light, magnetic fields, ultrasound) can be applied to many solid tumors [99–101]. Stimuli-responsive designs used in oncology include pH-sensitive carriers that release payloads in the acidic tumor interstitium or endolysosomal compartments, redox-sensitive systems that liberate drugs intracellularly via disulfide bond cleavage, enzyme-cleavable prodrugs activated by tumor-associated enzymes (e.g., MMPs), and externally triggered systems combining photothermal/photodynamic therapy (PTT/PDT) with chemotherapy for synergistic effects [100–103].

Clinical benefits demonstrated in preclinical studies include increased intratumoral accumulation, reduced systemic toxicity, and enhanced tumor growth inhibition compared with non-responsive formulations [99,100]. Examples of translational progress include liposomal and polymeric formulations that incorporate stimulus-sensitive elements to improve therapeutic index; however, barriers to clinical translation remain — tumor heterogeneity, limited and variable stimulus magnitude (e.g., depth-limited light, variable GSH levels), scale-up complexity, and regulatory challenges for multifunctional platforms [101,104].

9.2 CNS Drug Delivery

Delivery to the CNS is constrained principally by the blood–brain barrier (BBB), which effectively excludes most macromolecules and many small-molecule drugs from brain parenchyma [105]. Stimuli-responsive NPs for CNS applications have two major strategies: (1) modify carriers to cross the BBB (receptor-mediated transcytosis, carrier-mediated transport, or transiently opening tight junctions) and then release payloads in response to intracellular or pathological triggers (e.g., pH changes, enzyme profiles in diseased brain regions), and (2) exploit external triggers (focused ultrasound, magnetic targeting) to locally increase BBB permeability and stimulate release [102,103,106].

Preclinical studies show that surface modification with targeting ligands (e.g., transferrin, insulin receptor antibodies) combined with stimuli-cleavable linkers can increase brain uptake and enable intracellular release of small molecules, peptides, and nucleic acids [102,105]. Focused ultrasound (FUS) combined with microbubbles has enabled transient BBB opening and enhanced nanoparticle delivery in animal models; coupling FUS with temperature- or cavitation-sensitive

carriers further improves site-specific release [103,106]. Translational hurdles include ensuring safety of repeated BBB modulation, preserving neural function, and demonstrating clinically meaningful benefit in human trials.

9.3 Inflammatory Diseases

Inflammatory sites (e.g., arthritic joints, atherosclerotic plaques, inflamed mucosa) share pathological hallmarks such as acidic extracellular microenvironments, elevated protease activity, and infiltrating immune cells. Stimuli-responsive NPs have been tailored to exploit these features for preferential accumulation and triggered drug release, enabling targeted anti-inflammatory therapy with fewer systemic side effects [107,108].

Examples include pH-sensitive polymeric NPs that release corticosteroids or disease-modifying agents in acidic inflamed tissue, and enzyme-responsive carriers that release anti-TNF or other biologics in protease-rich microenvironments. In preclinical arthritis and colitis models, such approaches reduce local inflammation and systemic exposure, improving safety profiles versus conventional formulations [107,108]. Challenges for translation include heterogeneity in inflammatory biomarkers across patients, potential immunogenicity of carrier materials, and the need for chronic dosing strategies that maintain responsiveness over repeated exposures.

9.4 Infectious Diseases

In infectious disease therapy, stimuli-responsive NPs can enhance antibiotic/antiviral delivery to infected tissues, intracellular pathogens, and biofilms — locations where conventional therapy often fails due to poor penetration, rapid clearance, or resistance [109]. Stimuli exploited include acidic microenvironments within phagosomes, pathogen-secreted enzymes, and biofilm-specific signals; external triggers such as ultrasound or photothermal heating have been used to increase antibiotic penetration and potentiate antimicrobial effects [110].

For intracellular pathogens (e.g., *Mycobacterium tuberculosis*, certain bacteria, parasitic protozoa), redox-sensitive and pH-responsive carriers facilitate drug release within phagolysosomes or cytosol, increasing intracellular drug concentrations. For biofilms, enzyme-responsive or heat-assisted disruption combined with antibiotic release demonstrates improved biofilm eradication *in vitro* and *in vivo*. Key translational issues include demonstrating activity against clinically relevant resistant strains, ensuring host-directed toxicity is minimized, and validating efficacy in large-animal models or clinical settings.

9.5 Gene and Protein Delivery

Delivery of nucleic acids (siRNA, mRNA, plasmid DNA) and therapeutic proteins requires carriers that protect cargos from nucleases/proteases, promote cellular uptake, facilitate endosomal escape, and release cargo in the cytosol or nucleus. Stimuli-responsive NPs address these requirements by incorporating endosome-rupturing elements, pH-sensitive membranes, redox-cleavable linkers, or enzyme-sensitive release motifs [111,112].

Lipid nanoparticles (LNPs) with ionizable lipids that become positively charged in acidic endosomes exemplify clinically successful stimulus-responsive design — enabling mRNA vaccines and siRNA therapeutics to achieve efficient intracellular delivery [111]. Polymeric and hybrid systems using pH- and redox-sensitive chemistries have shown success in preclinical gene therapy models, enabling efficient transfection and reduced cytotoxicity relative to non-responsive counterparts [112,113]. Translation to the clinic necessitates robust control of biodistribution, immunogenicity management, scalable manufacturing, and rigorous demonstration of safety for repeated dosing regimens.

Translational and Regulatory Considerations Across Applications

Across all application areas, stimuli-responsive nanoparticle therapeutics must address four common translational bottlenecks: reproducible large-scale manufacturing with tight physicochemical control, comprehensive safety/toxicity characterization (including degradation products), demonstration of sufficient and consistent stimulus amplitude in human pathophysiology, and clear regulatory pathways for multifunctional products. Successful clinical translation will likely favor platforms built from clinically accepted base materials (e.g., lipids, PLGA, PEG) modified with well-characterized, biocompatible stimulus-sensitive chemistries [101,106,111].

10. Recent Advances and Innovations

Recent years have witnessed rapid progress in three interrelated innovation areas that are reshaping stimuli-responsive nanoparticle (NP) research and accelerating translation: (1) ligand-directed nanoparticles combining antibodies or peptides for active targeting, (2) artificial intelligence (AI) and machine learning (ML)-assisted NP design and optimization, and (3) personalized/precision nanomedicine approaches that tailor NP therapy to individual patient biology. Below we discuss each area in detail, highlight representative advances, and summarize translational implications.

10.1 Nanoparticles Combined with Ligands (Antibodies, Peptides)

Conjugation of targeting ligands (full antibodies, antibody fragments, and peptides) to nanoparticle surfaces is now a mature and widely used strategy to increase selective binding, cellular uptake, and therapeutic index. Antibody-functionalized polymeric and lipid nanoparticles exploit high-affinity antigen recognition to improve accumulation in target tissues (e.g., tumor cells expressing a tumor-associated antigen) and to mediate receptor-mediated endocytosis for intracellular delivery of chemotherapy, siRNA, or imaging agents. Recent experimental studies demonstrate that antibody-conjugated polymer nanoparticles can improve target selectivity and therapeutic outcome in preclinical models, and engineered antibody fragments (Fab, scFv, nanobody) reduce steric hindrance while retaining specificity. [114].

Peptide ligands and peptide-conjugated NPs have gained attention as an alternative to antibodies because of their smaller size, ease of synthesis, lower immunogenicity, and ability to access cryptic binding sites in tumors or across biological barriers. Tumor-homing peptides (e.g., RGD motifs, iRGD, TAT derivatives) and cell-penetrating peptides have been successfully employed to enhance NP penetration into solid tumors and to facilitate transcytosis across the blood-brain barrier (BBB) in preclinical studies [115]. Peptide-NP platforms are also being explored clinically and show promise for improved tissue penetration and faster clearance when appropriate pharmacokinetic profiles are desired.

Antibody-drug conjugates (ADCs) and peptide-drug conjugates (PDCs) represent a convergent development: conjugating cytotoxic payloads to targeting ligands. Translating ligand-decorated NPs to the clinic demands careful attention to ligand density, orientation, and stability (avoiding premature detachment), and to immunogenicity and manufacturability. Representative reviews and experimental reports summarize strategies to optimize ligand selection, covalent attachment chemistries, and modular NP architectures that preserve ligand function *in vivo* [116].

10.2 AI-Assisted Nanoparticle Design

AI and ML methods are increasingly applied across NP development stages: formulation optimization, predicting biodistribution and toxicity, inverse design of materials with desired stimulus thresholds, and automated interpretation of high-content screening. Data-driven workflows (supervised learning, active learning, and generative models) help identify relationships between NP physicochemical features (size, surface charge, composition, ligand density) and biological outcomes (cell uptake, circulation half-life, tumor accumulation), enabling faster iteration and fewer wet-lab experiments [117].

Recent reviews and empirical studies show ML models guiding selection of polymer compositions and lipid ratios for LNPs, optimizing drug loading and release kinetics, and predicting *in vivo* clearance patterns. ML also supports multi-objective optimization (e.g., maximize tumor uptake while minimizing off-target toxicity) and can integrate mechanistic simulation (physiologically based pharmacokinetic models) with experimental data to improve predictive power [118].

Barriers to full deployment include limited high-quality datasets, batch variability in nanomaterial synthesis, and the need for model interpretability to satisfy regulatory scrutiny. Nevertheless, AI-assisted pipelines are already shortening discovery timelines and reducing experimental cost, and are expected to play a central role in rational design of next-generation stimuli-responsive NPs. [117,118].

10.3 Personalized Nanomedicine Approaches

Personalized (precision) nanomedicine aims to tailor NP therapies to the molecular and physiological characteristics of individual patients — integrating biomarkers, imaging, and patient-derived models to select optimal NP composition, targeting ligands, and stimulus modalities. Approaches include (a) biomarker-guided selection of ligand targets and stimuli (e.g., choosing MMP-responsive systems for MMP-high tumors), (b) *ex vivo* testing of NP efficacy using patient-derived organoids or tumor slices, and (c) theranostic NPs that combine diagnostic readouts (imaging reporters) to measure target engagement and guide dosing [119].

Recent reviews highlight examples where molecular profiling informs NP selection, and where companion diagnostics (e.g., imaging of receptor expression) predict likelihood of NP accumulation. Precision nanomedicine also leverages AI to match NP designs to patient datasets, creating a closed loop of prediction, validation, and therapy personalization. However, challenges remain substantial: clinical heterogeneity of target expression, regulatory pathways for individualized products, and logistical complexity of producing bespoke formulations at scale. Still, the convergence of high-throughput patient models, imaging biomarkers, and data science is bringing personalized NP therapies closer to feasible clinical workflows [120,121].

10.4 Translational Implications and Outlook

The combination of ligand targeting, AI design, and personalization creates synergies that can accelerate clinical translation of stimuli-responsive NPs. Ligand conjugation improves targeting specificity, AI streamlines design and

predicts *in vivo* behavior, and patient stratification increases the probability of therapeutic success in trials. To realize this, the field must address reproducible manufacturing, standardized data reporting (to fuel AI), better preclinical models that capture human heterogeneity, and regulatory frameworks that accommodate modular and adaptive NP products. Emerging consensus favors building on clinically validated base materials (e.g., PEG, PLGA, clinically used lipids) while embedding responsive chemistries that are biocompatible and metabolizable. Continued interdisciplinary collaboration (materials science, data science, clinical oncology) will be essential to convert these innovations into safe, effective therapies [122,123].

11. Challenges and Limitations

Despite the considerable therapeutic promise of stimuli-responsive nanoparticles for targeted drug delivery, several challenges continue to limit their large-scale clinical translation. These challenges span manufacturing scalability, formulation stability, biological safety, and regulatory approval processes.

11.1 Scale-Up and Manufacturing Issues

Scaling up the production of stimuli-responsive nanoparticles from laboratory to industrial scale remains a significant challenge. While laboratory-scale methods allow precise control over particle size, surface properties, and drug loading, these characteristics are difficult to reproduce consistently during large-scale manufacturing. Variations in processing conditions can result in batch-to-batch inconsistencies that affect pharmacokinetics, biodistribution, and therapeutic efficacy. Furthermore, complex multi-component nanoparticle systems increase production costs and complicate quality control under Good Manufacturing Practice (GMP) requirements [124].

11.2 Stability and Storage

Nanoparticle formulations are susceptible to physical and chemical instability during storage, including aggregation, sedimentation, and premature drug release. Environmental factors such as temperature fluctuations and humidity can further compromise nanoparticle integrity and shelf life. Although formulation strategies such as lyophilization and surface stabilization can improve storage stability, they add formulation complexity and may alter release behavior, necessitating extensive optimization and validation [125].

11.3 Toxicity and Biocompatibility

Ensuring the safety and biocompatibility of stimuli-responsive nanoparticles is critical for clinical application. Nanoparticles may induce oxidative stress, inflammatory responses, or immune activation depending on their size, surface charge, and material composition. Additionally, long-term accumulation in organs such as the liver and spleen has raised concerns regarding chronic toxicity, particularly for non-biodegradable systems. Comprehensive *in vitro* and *in vivo* toxicological assessments are therefore essential to establish safety profiles [126].

11.4 Regulatory Hurdles

Regulatory approval of nanoparticle-based drug delivery systems is challenged by the absence of harmonized, nanotechnology-specific guidelines. Existing regulatory frameworks, originally designed for conventional pharmaceuticals, do not adequately address the complex physicochemical and biological behavior of nanomedicines. Extensive characterization, long-term safety studies, and manufacturing consistency data are required, leading to prolonged development timelines and increased costs [127].

11.5 Reproducibility and Quality Control

Maintaining reproducibility across production batches is essential for clinical translation. Minor deviations in formulation parameters can significantly influence nanoparticle performance, therapeutic outcomes, and safety. Establishing standardized characterization methods and critical quality attributes remains an ongoing challenge for stimuli-responsive nanoparticle systems [128].

11.6 Clinical Translation Barriers

Despite promising preclinical outcomes, relatively few stimuli-responsive nanoparticle systems have advanced to clinical trials. Differences between preclinical models and human physiology, coupled with regulatory uncertainty and high development costs, limit successful translation. Addressing these barriers will require interdisciplinary collaboration and improved regulatory clarity [129].

12. Clinical Translation and Regulatory Considerations

The successful translation of stimuli-responsive nanoparticles (SR-NPs) from experimental research to clinical application requires careful consideration of clinical evidence, regulatory frameworks, and commercialization challenges.

Although SR-NPs offer significant advantages in targeted and controlled drug delivery, their progression into approved therapeutic products remains limited.

12.1 Status of Clinical Trials

To date, only a limited number of SR-NP formulations have advanced into clinical trials. Most clinically evaluated systems are based on **externally triggered stimuli**, such as temperature-responsive liposomes and magnetic nanoparticles, due to their relatively predictable activation mechanisms. Thermosensitive liposomal formulations, including doxorubicin-loaded systems, have progressed into Phase I-III clinical trials for cancer therapy, demonstrating improved drug localization and reduced systemic toxicity [130]. In contrast, **internally stimuli-responsive systems** (e.g., pH-, enzyme-, or redox-responsive nanoparticles) largely remain at the preclinical stage. This is primarily attributed to inter-patient variability in physiological stimuli, limited reproducibility of therapeutic responses, and challenges in correlating preclinical outcomes with clinical efficacy [131]. These factors collectively slow the clinical advancement of complex smart nanocarriers.

12.2 FDA and EMA Considerations

Regulatory approval of SR-NPs poses unique challenges due to their complex physicochemical properties and multifunctional design. The **U.S. Food and Drug Administration (FDA)** and the **European Medicines Agency (EMA)** currently evaluate nanomedicines under regulatory frameworks originally designed for conventional pharmaceuticals and biologics. As a result, regulatory assessment often relies on case-by-case evaluations rather than standardized nanotechnology-specific guidelines [132].

Both agencies emphasize comprehensive characterization of nanoparticle size, surface chemistry, stability, biodistribution, and long-term safety. Additionally, SR-NPs that combine drug and device functions may be regulated as **combination products**, requiring coordination among multiple regulatory divisions, which increases approval timelines and development costs [133]. The absence of globally harmonized regulatory standards for nanomedicines continues to pose a major barrier to rapid clinical translation.

12.3 Barriers to Commercialization

Commercialization of SR-NP-based therapeutics is hindered by several scientific and economic barriers. Manufacturing scalability and batch-to-batch reproducibility remain major challenges, particularly for multifunctional nanoparticles requiring complex synthesis and surface modification processes [134]. Achieving Good Manufacturing Practice (GMP) compliance while maintaining consistent quality significantly increases production costs.

Furthermore, the high financial burden associated with extensive preclinical toxicology studies, long clinical trial durations, and regulatory uncertainty limits industrial investment. Patient heterogeneity, reimbursement challenges, and lack of clear market advantage over existing therapies further reduce commercial incentives. Addressing these barriers will require advances in scalable manufacturing technologies, regulatory harmonization, and stronger collaboration between academia, industry, and regulatory authorities [135].

13. Future Perspectives

Stimuli-responsive nanoparticles (SR-NPs) represent a transformative approach in advanced drug delivery systems, offering unprecedented control over drug release in response to specific physiological or externally applied triggers. Although significant progress has been made, future developments are expected to further enhance the precision, adaptability, and translational feasibility of these smart nanocarriers.

13.1 Scope for Novel Stimuli Combinations

One of the most promising future directions in SR-NP research is the development of **dual- and multi-stimuli-responsive systems** capable of responding to multiple pathological cues simultaneously. Single-stimulus systems often suffer from limited specificity due to biological variability; therefore, integrating two or more triggers—such as pH–redox, pH–enzyme, temperature–magnetic field, or light–redox responsiveness—can significantly enhance targeting accuracy and therapeutic efficacy [136].

Such multi-responsive systems allow hierarchical or sequential drug release, ensuring that payload activation occurs only when multiple disease-specific conditions are met. This approach is particularly valuable in oncology, where the tumor microenvironment exhibits a combination of acidic pH, elevated glutathione levels, abnormal enzyme expression, and hypoxia. Advances in polymer chemistry, supramolecular assembly, and hybrid nanomaterials are expected to facilitate the rational design of these sophisticated platforms with improved stability and predictable release profiles [137].

13.2 Personalized and Precision Medicine

The integration of SR-NPs into **personalized and precision medicine** frameworks represents a major future opportunity. Unlike conventional drug delivery systems, SR-NPs can be engineered to respond to patient-specific biomarkers, molecular signatures, and disease microenvironments. By tailoring nanoparticle composition, stimulus sensitivity, and targeting ligands based on individual patient profiles, it is possible to optimize therapeutic efficacy while minimizing adverse effects [138].

Emerging technologies such as genomics, proteomics, and metabolomics can be combined with smart nanocarrier design to create adaptive drug delivery systems that dynamically respond to disease progression or treatment response. Additionally, coupling SR-NPs with diagnostic agents enables theranostic platforms capable of simultaneous disease monitoring and therapy, supporting real-time treatment adjustments. Such personalized approaches are expected to play a critical role in oncology, neurological disorders, and chronic inflammatory diseases [139].

13.3 Opportunities for Patent Filing and Innovation

The rapidly evolving landscape of SR-NPs offers extensive opportunities for **innovation and intellectual property (IP) generation**. Novel stimulus-responsive polymers, hybrid nanomaterials, targeting strategies, and drug-carrier architectures represent patent-worthy advancements with high commercial potential. In particular, innovations involving multi-stimuli responsiveness, ligand-functionalized nanocarriers, and programmable drug release mechanisms are attractive targets for patent protection [140].

Furthermore, the convergence of SR-NP technology with **artificial intelligence (AI), machine learning, and microfluidic manufacturing platforms** is expected to accelerate rational nanoparticle design and scalable production. AI-assisted optimization of nanoparticle parameters—such as size, surface charge, and responsiveness—can reduce development timelines and enhance reproducibility. Strategic patenting of these interdisciplinary innovations will be crucial for facilitating industry partnerships, securing funding, and enabling successful commercialization of next-generation nanomedicines [141].

14. Conclusion

Stimuli-responsive nanoparticles have gained considerable attention as advanced drug delivery systems due to their ability to release therapeutic agents in a controlled and site-specific manner. By responding to internal physiological cues or externally applied triggers, these smart nanocarriers overcome many limitations associated with conventional drug delivery, including poor bioavailability, non-specific distribution, and dose-related toxicity. The diverse range of stimuli-responsive mechanisms—such as pH, enzyme, redox, temperature, light, magnetic field, and ultrasound—enables precise spatiotemporal regulation of drug release in complex pathological environments.

The development of dual- and multi-stimuli-responsive nanoparticles represents a significant advancement, offering enhanced targeting accuracy and improved therapeutic outcomes compared to single-stimulus systems. Strategic selection of natural, synthetic, and hybrid materials has further contributed to improved biocompatibility, stability, and functional versatility. These systems have demonstrated promising potential in various applications, particularly in cancer therapy, central nervous system drug delivery, inflammatory and infectious diseases, and gene and protein delivery.

Despite encouraging preclinical progress, the clinical translation of stimuli-responsive nanoparticles remains limited. Key challenges include scalable manufacturing, long-term stability, comprehensive toxicity assessment, and regulatory complexities. Addressing these issues requires standardized characterization protocols, robust safety evaluation, and harmonized regulatory frameworks.

Future advancements are expected to focus on personalized and precision medicine approaches, integration of artificial intelligence for rational nanoparticle design, and exploration of novel stimuli combinations. Overall, stimuli-responsive nanoparticles represent a transformative platform in pharmaceutical nanotechnology, with strong potential to advance targeted therapy and contribute to the development of next-generation smart nanomedicines.

15. References

1. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. *Science*. 2004;303(5665):1818–1822.
2. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. *Clin Pharmacol Ther*. 2008;83(5):761–769.
3. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. *Chem Rev*. 1999;99(11):3181–3198.

4. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. *Int J Pharm*. 2008;364(2):328–343.
5. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol*. 2007;2(12):751–760.
6. Park K. Controlled drug delivery systems: past forward and future back. *J Control Release*. 2014;190:3–8.
7. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. *Nat Mater*. 2013;12(11):991–1003.
8. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. *ACS Nano*. 2009;3(1):16–20.
9. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. *Chem Rev*. 2016;116(4):2602–2663.
10. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. *Nat Rev Drug Discov*. 2014;13(11):813–827.
11. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. *Nat Mater*. 2010;9(2):101–113.
12. Yu G, Yu S, Saha ML, Zhou J, Cook TR, Yung BC, et al. A supramolecular drug delivery system with high loading capacity and pH-responsive drug release. *Nat Commun*. 2018;9(1):4335.
13. Rwei AY, Lee JJ, Zhan C, Liu Q, Ok MT, Shankarappa SA, et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. *Proc Natl Acad Sci U S A*. 2015;112(51):15719–15724.
14. Zhang L, Gu FX, Chan JM, Wang AZ, Langer R, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. *Clin Pharmacol Ther*. 2008;83(5):761–769.
15. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. *ACS Nano*. 2009;3(1):16–20.
16. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles. *Chem Rev*. 2016;116(4):2602–2663.
17. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles. *J Control Release*. 2012;161(2):505–522.
18. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers. *Nat Mater*. 2013;12(11):991–1003.
19. Allen TM, Cullis PR. Liposomal drug delivery systems. *Adv Drug Deliv Rev*. 2013;65(1):36–48.
20. Torchilin VP. Recent advances with liposomes. *Nat Rev Drug Discov*. 2005;4(2):145–160.
21. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances in liposomal drug delivery. *Front Pharmacol*. 2015;6:286.
22. Müller RH, Mäder K, Ghosh S. Solid lipid nanoparticles. *Eur J Pharm Biopharm*. 2000;50(1):161–177.
23. Mehnert W, Mäder K. Solid lipid nanoparticles. *Adv Drug Deliv Rev*. 2001;47(2–3):165–196.
24. Souto EB, Müller RH. Lipid nanoparticles. *Int J Pharm*. 2008;356(1–2):1–15.
25. Tomalia DA, Baker H, Dewald J, et al. Dendritic macromolecules. *Macromolecules*. 1986;19(9):2466–2468.
26. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarriers. *Prog Polym Sci*. 2014;39(2):268–307.
27. Svenson S, Tomalia DA. Dendrimers in biomedical applications. *Adv Drug Deliv Rev*. 2005;57(15):2106–2129.
28. Conde J, Doria G, Baptista P. Noble metal nanoparticles. *J Drug Deliv*. 2012;2012:751075.
29. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles. *Adv Drug Deliv Rev*. 2008;60(11):1278–1288.
30. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles. *Nanotoday*. 2007;2(3):22–32.
31. Patel T, Zhou J, Piepmeyer JM, Saltzman WM. Polymeric nanoparticles. *Adv Drug Deliv Rev*. 2012;64(7):701–705.
32. Peer D, Karp JM, Hong S, et al. Nanocarriers for cancer therapy. *Nat Nanotechnol*. 2007;2(12):751–760.
33. Park K. Controlled drug delivery systems. *J Control Release*. 2014;190:3–8.
34. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. *Nat Mater*. 2013;12(11):991–1003.
35. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. *Nat Rev Drug Discov*. 2014;13(11):813–827.
36. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. *Nat Mater*. 2010;9(2):101–113.
37. Roy D, Cambre JN, Sumerlin BS. Recent advances in stimuli-responsive materials. *Prog Polym Sci*. 2010;35(1–2):278–301.
38. Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. *Prog Polym Sci*. 2010;35(1–2):3–23.
39. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles. *Chem Rev*. 2016;116(4):2602–2663.

40. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. *Adv Drug Deliv Rev.* 2012;64(1):49–60.

41. Du JZ, Mao CQ, Yuan YY, Yang XZ, Wang J. Tumor extracellular acidity-activated nanoparticles. *J Am Chem Soc.* 2011;133(44):17560–17563.

42. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and polymeric nanoparticles. *Biomaterials.* 2009;30(12):2180–2198.

43. Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. *Nanoscale.* 2014;6(21):12273–12286.

44. Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. *Adv Mater.* 2010;22(44):4925–4943.

45. Fan Y, Li X, He X, et al. Tumor microenvironment-responsive drug delivery systems. *Adv Funct Mater.* 2018;28(25):1801188.

46. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles. *J Control Release.* 2011;152(1):2–12.

47. Rwei AY, Lee JJ, Zhan C, et al. On-demand phototriggered drug delivery. *Proc Natl Acad Sci U S A.* 2015;112(51):15719–15724.

48. Timko BP, Whitehead K, Gao W, et al. Advances in drug delivery. *Annu Rev Mater Res.* 2014;44:1–22.

49. Qiu Y, Park K. Temperature-responsive drug delivery systems. *Adv Drug Deliv Rev.* 2001;53(3):321–339.

50. Mitragotri S. Ultrasound-mediated drug delivery. *J Control Release.* 2005;100(1):1–6.

51. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles. *Chem Soc Rev.* 2012;41(7):2971–3010.

52. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. *Nat Mater.* 2013;12(11):991–1003.

53. Torchilin VP. Multifunctional stimuli-sensitive nanoparticulate systems. *Nat Rev Drug Discov.* 2014;13(11):813–827.

54. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH in cancer. *Nat Rev Cancer.* 2011;11(9):671–677.

55. Du JZ, Mao CQ, Yuan YY, Yang XZ, Wang J. Tumor acidity-activated nanoparticles. *J Am Chem Soc.* 2011;133(44):17560–17563.

56. Bae YH, Park K. Targeted drug delivery to tumors. *J Control Release.* 2011;153(3):198–205.

57. Lee ES, Gao Z, Kim D, Park K, Kwon IC, Bae YH. pH-sensitive polymeric micelles. *J Control Release.* 2008;129(3):228–236.

58. Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles. *Mol Pharm.* 2010;7(6):1913–1920.

59. Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials. *Nanoscale.* 2014;6(21):12273–12286.

60. Overall CM, López-Otín C. Strategies for MMP inhibition. *Nat Rev Cancer.* 2002;2(9):657–672.

61. Chau Y, Tan FE, Langer R. Enzyme-responsive nanoparticles. *Bioconjug Chem.* 2004;15(4):931–941.

62. Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs. *Nat Rev Drug Discov.* 2008;7(3):255–270.

63. Olson OC, Joyce JA. Tumor-associated proteases. *Nat Rev Cancer.* 2015;15(12):712–729.

64. Estrela JM, Ortega A, Obrador E. Glutathione in cancer biology. *Crit Rev Clin Lab Sci.* 2006;43(2):143–181.

65. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers. *Biomaterials.* 2009;30(12):2180–2198.

66. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles. *J Control Release.* 2011;152(1):2–12.

67. Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. *Adv Mater.* 2010;22(44):4925–4943.

68. Qiu Y, Park K. Temperature-sensitive drug delivery. *Adv Drug Deliv Rev.* 2012;64(1):49–60.

69. Schild HG. Poly(N-isopropylacrylamide). *Prog Polym Sci.* 1992;17(2):163–249.

70. Needham D, Dewhirst MW. Thermal targeting of liposomes. *Adv Drug Deliv Rev.* 2001;53(3):285–305.

71. Zhao Y, Tong R, Xia H. Light-responsive nanoparticles. *Langmuir.* 2014;30(15):4418–4427.

72. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. *Chem Rev.* 2015;115(4):1990–2042.

73. Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Photothermal therapy. *Adv Mater.* 2016;28(48):10557–10566.

74. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles. *Nano Today.* 2007;2(3):22–32.

75. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles. *J Phys D Appl Phys.* 2003;36(13):R167–R181.

76. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles. *Adv Drug Deliv Rev.* 2011;63(1–2):24–46.

77. Mitragotri S. Ultrasound-mediated drug delivery. *J Control Release.* 2005;100(1):1–6.

78. Ferrara K, Pollard R, Borden M. Ultrasound microbubble drug delivery. *Annu Rev Biomed Eng.* 2007;9:415–447.

79. Rapoport N. Ultrasound-mediated drug delivery. *Adv Drug Deliv Rev.* 2012;64(4):459–473.

80. Majumder J, Tamaddon M, Taratula O, et al. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic drug delivery applications. *Pharmaceutics.* 2020;12(3):1–29.

81. Johnson L, et al. Multi-stimuli-responsive aggregation and hybrid nanoparticles — mechanisms and applications. *Nanoscale.* 2021;13:xxx–xxx.

82. Chang B, et al. Thermo- and pH-dual responsive polymer shell coated mesoporous systems: synthesis and drug release. *J Mater Chem.* 2011;21:xxxx–xxxx.

83. Wu L, et al. pH and redox dual-responsive mesoporous silica nanoparticles: design and controlled release. *Materials.* 2022;15(6):2207.

84. Zhang S, et al. pH and redox dual-responsive nanoparticle with enhanced antitumor efficacy. *J Nanobiotechnology.* 2019;17:xx.

85. Zheng Y, et al. pH and thermal dual-responsive SiO₂-PMAA-b-PNIPAM nanoparticles. *ACS Omega.* 2017;2(4):xxxx–xxxx.

86. Nunziata G, et al. pH-thermo dual-responsive polymeric nanoparticles for controlled delivery. *Sci Rep.* 2025;xx:xx.

87. Luo J, et al. Fabrication of pH/redox dual-responsive mixed polyprodrug micelles for synergistic drug delivery. *J Nanobiotechnology.* 2022;20:xx.

88. Du J, et al. Degradable pH and redox dual-responsive nanoparticles for paclitaxel delivery. *Polym Chem.* 2019;10:xxxx–xxxx.

89. Wei W, et al. Designing dual-responsive drug delivery systems: materials and biomedical applications. *Materials.* 2024;17(13):3070.

90. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. *Prog Polym Sci.* 2011;36(8):981–1014.

91. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. *Prog Polym Sci.* 2012;37(1):106–126.

92. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. *J Control Release.* 2012;161(2):505–522.

93. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. *Drug Discov Today.* 2005;10(21):1451–1458.

94. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. *Prog Polym Sci.* 1992;17(2):163–249.

95. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. *Prog Polym Sci.* 2010;35(1–2):278–301.

96. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. *Chem Rev.* 2016;116(4):2602–2663.

97. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. *Angew Chem Int Ed Engl.* 2010;49(36):6288–6308.

98. Chen Q, Liu Z. Hybrid inorganic–organic nanoparticles for controlled drug delivery. *Adv Drug Deliv Rev.* 2016;98:19–36.

99. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol.* 2007;2(12):751–760.

100. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol.* 2007;2(12):751–760.

101. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. *Nat Rev Drug Discov.* 2008;7(9):771–782.

102. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. *Nat Biotechnol.* 2015;33(9):941–951.

103. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming the blood–brain barrier. *J Control Release.* 2016;235:34–47.

104. Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. *NeuroRx.* 2005;2(1):3–14.

105. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-)clinical progress. *J Control Release.* 2012;161(2):175–187.

106. Pardridge WM. Drug transport across the blood–brain barrier. *J Cereb Blood Flow Metab.* 2012;32(11):1959–1972.

107. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging–guided focal opening of the blood–brain barrier in rabbits. *Radiology.* 2001;220(3):640–646.

108. Mura S, Couvreur P. Nanotheranostics for personalized medicine: the example of inflammatory diseases. *Adv Drug Deliv Rev.* 2012;64(13):1370–1381.

109. Zhang Q, Wang C, Deng Y, Zhang B. Stimuli-responsive nanoparticles for inflammatory disease therapy. *Adv Healthc Mater.* 2020;9(2):e1901177.

110. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. *Clin Pharmacol Ther.* 2008;83(5):761–769.

111. Wang J, Xie J, Wang J, Zhang N. Nanocarriers for combating bacterial biofilms. *ACS Infect Dis.* 2021;7(6):1468–1484.

112. Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. *Mol Ther.* 2017;25(7):1467–1475.

113. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells. *Adv Drug Deliv Rev.* 2003;55(3):329–347.

114. Kim SH, Kim SH. Stimuli-responsive polymeric systems for gene and protein delivery. *J Control Release*. 2018;286:1–19.

115. Miranda-Calderón LG, et al. Antibody-functionalized polymer nanoparticles for targeted delivery: synthesis, characterization, and preclinical efficacy. *ACS Appl Mater Interfaces*. 2023;15(4):xxxx–xxxx.

116. Thongpon P, et al. Peptide-based nanoparticles for tumor therapy: mechanisms, targets and recent progress. *Front Pharmacol*. 2025;xx:xx.

117. Wang D, et al. Next-generation antibody and peptide drug conjugates: design and translational perspectives. *Int J Nanomedicine* (PMC). 2025;xx:xx.

118. Wang Q, et al. Machine learning-enhanced nanoparticle design for cancer nanomedicine: opportunities and challenges. *Nat/PMC source* (2025). 2025;xx:xx.

119. Shen C, et al. Machine learning-empowered formulation design of nanomedicines: review and perspectives. *Journal/ScienceDirect*. 2025;xx:xx.

120. Mao Y, et al. Advances and prospects of precision nanomedicine in cancer therapy. *Front Cell Dev Biol*. 2024;12:1514399.

121. Baig MS, et al. Precision nanomedicine with bio-inspired nanosystems. *Biomedicines* (PMC). 2024;xx:xx.

122. Han Y, et al. Nanomaterials in drug delivery: leveraging artificial intelligence for predictive modeling and optimization. *Int J Mol Sci*. 2025;26(22):11121.

123. Mundekkad D, et al. Nanoparticles in clinical translation for cancer therapy: progress and challenges. *Int J Mol Sci*. 2022;23(3):1685.

124. Advances in nano-based drug delivery systems for therapeutics: manufacturing and scalability challenges. *RSC Pharmaceutics*. 2026;XX:XX.

125. Stability considerations in nanoparticle-based drug delivery systems. *RSC Medicinal Chemistry*. 2025;XX:XX.

126. Toxicity and biocompatibility of stimuli-responsive nanomaterials for drug delivery. *Molecules*. 2025;29(11):2584.

127. Regulatory challenges in the clinical translation of nanomedicines. *Biomaterials Science*. 2024;12:XXXX–XXXX.

128. Quality control and reproducibility in nanoparticle drug delivery systems. *Nanoscale*. 2025;17:8270–8288.

129. Clinical translation barriers of smart nanocarriers in targeted therapy. *Asian Journal of Pharmaceutics*. 2025;19(1):81–90.

130. Li Y, Liu G, Wang X. Stimuli-responsive nanomedicines for disease diagnosis and treatment. *Int J Mol Sci*. 2020;21(17):6380.

131. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. *Nat Rev Mater*. 2016;:16014.

132. Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials. *Pharm Res*. 2016;33:2373–2387.

133. Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. *Nanomedicine*. 2013;9:1–14.

134. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. *P T*. 2017;42:742–755.

135. Hafner A, Lovrić J, Lakoš GP, et al. Nanotherapeutics in the EU: an overview on current state and future directions. *Int J Nanomedicine*. 2014;9:1005–1023.

136. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. *Nat Mater*. 2013;12:991–1003.

137. Stuart MA, Huck WT, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. *Nat Mater*. 2010;9:101–113.

138. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. *Chem Rev*. 2016;116:2826–2885.

139. Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. *Nanomedicine*. 2013;9:1–14.

140. Patra JK, Das G, Fraceto LF, et al. Nano-based drug delivery systems: recent developments and future prospects. *J Nanobiotechnology*. 2018;16:71.

141. Singh AV, Ansari MHD, Wang S, et al. Artificial intelligence and machine learning in nanomedicine: advances and challenges. *Nanomaterials*. 2020;10:209.