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Abstract 

The selection of appropriate building materials often involves handling        uncertain, vague and incomplete 

information arising from diverse criteria such as cost, durability, strength and thermal insulation. To address 

this challenge, we propose a novel framework based on Multi vague sets, which extend traditional vague set 

theory by incorporating Multi dimensional truth, falsity and hesitation values. This enriched representation 

captures the imprecise nature of real-world material data more effectively. We define and utilize multiple 

distance measures tailored for Multi vague environments to compare and classify materials based on their 

attributes. A case study involving five dimensional evaluations of building materials demonstrates the efficacy 

of this method in recognizing patterns and assisting in material recommendation. The proposed approach 

enhances decision making by offering a structured, scalable and interpretable model for vague and hesitant 

information in construction related applications. 
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1 Introduction 

Pattern recognition plays a vital role in various fields such as computer vision, medical diagnosis and data 
mining where accurate classification and decision making are essential despite the presence of uncertainty 

and imprecision (Zadeh, 1965) [7]. Traditional approaches often struggle to handle ambiguous or vague 
data effectively. To address these challenges, fuzzy set theory has been widely utilized; however, it 

sometimes fails to capture the full extent of uncertainty, especially when multiple degrees of vagueness 
coexist. 

Multi vague sets extend the classical vague and fuzzy set concepts by incorporating membership function and 

non- membership function that simultaneously represent truth and falsity degrees (Atanassov, 1986) [6]. This 
enriched framework allows for a more nuanced representation of complex and uncertain information, which is 

particularly useful in pattern recognition tasks where data ambiguity is inherent. 
 

Distance measures between such fuzzy structures are essential tools for pattern recognition, classification and 

decision making, as they quantify the similarity or dissimilarity between uncertain elements. Szmidt and 
Kacprzyk (1997) [2] made significant contributions by developing and analyzing distance metrics for 

intuitionistic fuzzy sets, which have become foundation in the field. Their work demonstrated the effectiveness 
of distance-based methods in various applications including medical diagnosis and career determination. 
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× → 

 

 

In this paper, we propose a novel distance-based approach utilizing Multi vague sets to enhance pattern 
recognition. By defining and computing appropriate distance measures between Multi vague sets, we enable 

more effective discrimination and classification of patterns characterized by Multi-dimensional vagueness 
(N. Ramakrishna, 2020) [11]. The proposed methodology not only captures the inherent uncertainty in data 

but also integrates hesitation parameters, improving robustness and decision accuracy. 
Our work builds upon and extends existing theories in fuzzy and vague set literature, contributing to the ongoing 

development of intelligent systems capable of handling uncertain and incomplete information. Experimental 

results demonstrate the effectiveness of the proposed method in real world applications, highlighting its 
potential for advancing pattern recognition techniques. 

 

2 Preliminaries 

Definition 2.1 A Vague set A in the universe of discourse G is a pair (tA, fA) where tA: G → [0, 1], 

fA: G → [0, 1], are the mappings such that tA(x) + fA(x) ≤ 1, for all x ∈ G. The functions tA(x) and  

fA(x) are true and false membership functions respectively. 

 

Definition 2.2 Let G be a non-empty set. A vague set A = (tA, fA) where          tA(x) = (t1A(x), 
t2A(x), ..., t kA(x)) and fA(x) = (f1A(x), f2A(x), ..., fkA (x)) and 

t iA: G → [0, 1], f iA: G → [0, 1], are mappings such that tiA (x) + fiA (x) ≤ 1, for all x ∈ G, for i 
=1,2,3, ........................................ , k., is called Multi vague set of G with dimension k. Here t1A(x) ≥ t2A(x) 

≥ ......t kA(x), for all x ∈ G. 

 

Note: We arranged the true membership sequence is decreasing order, then the corresponding false 
membership sequence need not be in decreasing or increasing order. 

 

According to fuzzy set theory, if the membership degree of an element is tA(x), if non- membership 

degree of an element x is fA(x). Furthermore, we have       πA(x) = 1 − tA(x) − fA(x) called the 

vague set index or hesitation on margin of x in A. πA(x) is the degree of indeterminacy of x ∈ G to 

the vague set A and i.e., πA(x)                              

∈ [0, 1] for every x ∈ G, πA(x) expresses the lack of knowledge of whether x belongs to  

the vague set A or not. 

 

Definition 2.3 Let G be non-empty group and A, B, C are vague sets in G. 

The distance measure d between vague sets A and B is a mapping d : G G [0, 1]; 

if d (A, B) satisfies the following axioms. 

 

A1) 0 ≤ d(A,B) ≤ 1 
A2) d (A, B) = 0 iff A = B  

A3) d (A, B) = d (B, A) 

A4) d (A, C) + d (C, B) ≥ d (A, B) 

A5) if A ⊆ B ⊆ C, then d (A, C) ≥ d (A, B) and d (A, C) ≥ d (B, C) 

 
Distance measure is a term that describes the difference between vague sets and can be considered as a dual 

concept of similarity measures between vague sets proposed by Szmidt, E., & Kacprzyk, J. 

 

Definition 2.4 Let A = {⟨x, tA(x), fA(x), πA(x)⟩ | x ∈ G} and  

B = {⟨x, 𝑡𝐵(𝑥), 𝑓𝐵(𝑥), 𝜋𝐵(𝑥) ⟩ | x ∈ G} be two vague sets in G= {x1, x2,…, xn}.  

Based on the geometric interpretation of vague set, Szmidt, E and  Kacprzyk, J, proposed             the 

following four distance measures between A and B. 

 

Let A = {⟨x1, tA(x1), fA(x1), πA(x1)⟩, 
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                    ⟨x2, tA(x2), fA(x2), πA(x2)⟩, 
                       ⟨....., ....., ............, ⟩, 
                       ⟨....., ......, ............, ⟩, 
                   ⟨xn, tA(xn), fA(xn), πA(xn)⟩} 

 

B = {⟨x1, tB(x1), fB(x1), πB(x1)⟩, 
                 ⟨x2, tB(x2), fB(x2), πB(x2)⟩, 
                   ⟨....., ....., ............, ⟩, 
                   ⟨....., ......, ............, ⟩, 
                 ⟨xn, tB(xn), fB(xn), πB(xn)⟩}, then 

1) The Hamming distance. 

d𝐻(A, B) =
1

2
∑(|tA(xi) − tB(xi)| + |fA(xi) − fB(xi)| + |πA(xi) − πB(xi)|)

𝑛

𝑖=1

 

 

2) The Euclidean distance. 

 

dE(A, B) = √
1

2
∑(|tA(xi) − tB(xi)|2

n

i=1

+ |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2)
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3) The Normalized Euclidean distance. 

 

dE(A, B) = √
1

2n
∑(|tA(xi) − tB(xi)|2

n

i=1

+ |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2) 

 

4) The Normalized Hamming distance. 

d𝐻(A, B) =
1

2𝑛
∑(|tA(xi) − tB(xi)| + |fA(xi) − fB(xi)| + |πA(xi) − πB(xi)|)

𝑛

𝑖=1

 

 

 

3 Distance between Multi vague sets 

Now, we extend these distances to Multi vague sets. 

i.e., 𝐴 = {< 𝑥1, (𝑡1𝐴(𝑥1), … . . , 𝑡𝑘𝐴(𝑥1)), (𝑓1𝐴(𝑥1), … . . , 𝑓𝑘𝐴(𝑥1)), (𝜋1𝐴(𝑥1), … . . , 𝜋𝑘𝐴(𝑥1))> 

< . . , (𝑡1𝐴(. . ), … . . , 𝑡𝑘𝐴(. . )), (𝑓1𝐴(. . ), … . . , 𝑓𝑘𝐴(. . )), (𝜋1𝐴(. . ), … . . , 𝜋𝑘𝐴(. . ))> 

< 𝑥1, (𝑡1𝐴(𝑥𝑗), … . . , 𝑡𝑘𝐴(𝑥𝑗)), (𝑓1𝐴(𝑥𝑗), … . . , 𝑓𝑘𝐴(𝑥𝑗)) , (𝜋1𝐴(𝑥𝑗), … . . , 𝜋𝑘𝐴(𝑥𝑗))> 

< . . , (𝑡1𝐴(. . ), … . . , 𝑡𝑘𝐴(. . )), (𝑓1𝐴(. . ), … . . , 𝑓𝑘𝐴(. . )), (𝜋1𝐴(. . ), … . . , 𝜋𝑘𝐴(. . ))> 

< 𝑥1, (𝑡1𝐴(𝑥𝑛), … . . , 𝑡𝑘𝐴(𝑥𝑛)), (𝑓1𝐴(𝑥𝑛), … . . , 𝑓𝑘𝐴(𝑥𝑛)), (𝜋1𝐴(𝑥𝑛), … . . , 𝜋𝑘𝐴(𝑥𝑛))>} 

 

 𝐵 = {< 𝑥1, (𝑡1𝐵(𝑥1), … . . , 𝑡𝑘𝐵(𝑥1)), (𝑓1𝐵(𝑥1), … . . , 𝑓𝑘𝐵(𝑥1)), (𝜋1𝐵(𝑥1), … . . , 𝜋𝑘𝐵(𝑥1))> 

< . . , (𝑡1𝐵(. . ), … . . , 𝑡𝑘𝐵(. . )), (𝑓1𝐵(. . ), … . . , 𝑓𝑘𝐵(. . )), (𝜋1𝐵(. . ), … . . , 𝜋𝑘𝐵(. . ))> 

< 𝑥1, (𝑡1𝐵(𝑥𝑗), … . . , 𝑡𝑘𝐵(𝑥𝑗)), (𝑓1𝐵(𝑥𝑗), … . . , 𝑓𝑘𝐵(𝑥𝑗)) , (𝜋1𝐵(𝑥𝑗), … . . , 𝜋𝑘𝐵(𝑥𝑗))> 

< . . , (𝑡1𝐵(. . ), … . . , 𝑡𝑘𝐵(. . )), (𝑓1𝐵(. . ), … . . , 𝑓𝑘𝐵(. . )), (𝜋1𝐵(. . ), … . . , 𝜋𝑘𝐵(. . ))> 

< 𝑥1, (𝑡1𝐵(𝑥𝑛), … . . , 𝑡𝑘𝐵(𝑥𝑛)), (𝑓1𝐵(𝑥𝑛), … . . , 𝑓𝑘𝐵(𝑥𝑛)), (𝜋1𝐵(𝑥𝑛), … . . , 𝜋𝑘𝐵(𝑥𝑛))>} 

 

Here A and B are Multi vague sets with dimension k, and having n elements. 

and 𝑡1𝐴 ≥ 𝑡2𝐴 ≥ ⋯ ≥ 𝑡𝑘𝐴, 𝑡𝑖𝐴: 𝐺 → [0, 1], 𝑓𝑖𝐴: 𝐺 → [0, 1]  𝑎𝑛𝑑  𝜋𝑖𝐴: 𝐺 → [0, 1] are 

 membership, non- membership and hesitant functions respectively. Also  

 𝑡𝑖𝐴 +  𝑓𝑖𝐴 + 𝜋𝑖𝐴 = 1, ∀𝑖 = 1,2, . . , 𝑘.    And j=1,2,…,n. 

1) The Manhattan distance. 
 

d𝑀𝑎𝑛(A, B) =
1

𝑛
∑ ∑(|tiA(xj) − tiB(xj)| + |fiA(x𝑗) − fiB(x𝑗)| + |πiA(x𝑗) − πiB(x𝑗)|)

𝑘

𝑖=1

𝑛

𝑗=1

 

2) The Euclidean distance. 

 

dE(A, B) = √
1

𝑛
∑ ∑(|tA(xi) − tB(xi)|2 + |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2)

𝑘

𝑖=1

n

𝑗=1
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∈ 

3) The Normalized Euclidean distance. 

 

dn−E(A, B) = √
1

𝑛𝑘
∑ ∑ (|tiA(xj) − tiB(x𝑗)|

2
+ |fiA(x𝑗) − fiB(xj)|

2
+ |πiA(xj) − πiB(x𝑗)|

2
)

𝑘

𝑖=1

n

𝑗=1

 

4) The Normalized Manhattan distance. 

 

d𝑛−𝑀𝑎𝑛(A, B) =
1

𝑛𝑘
∑ ∑(|tiA(xj) − tiB(xj)| + |fiA(x𝑗) − fiB(x𝑗)| + |πiA(x𝑗) − πiB(x𝑗)|)

𝑘

𝑖=1

𝑛

𝑗=1

 

 

 

Note: Hamming distance counts the number of positions at which two vectors 

(or strings) of equal length differ. It’s typically used for categorical, binary or discrete data, while Manhattan 
measures the sum of absolute differences between coordinates in a Multi dimensional space. It’s a numeric 

measure for continuous or real-valued vectors. So, we replacing Hamming distance with Manhattan distance. 

 

Example 3.1 Let G be a nonempty group. A and B are Multi vague sets of G with dimension 4, with 

3 elements. Let x, y and z ∈ G 

A = {⟨x, (0.9, 0.8, 0.7, 0.6), (0, 0.1, 0.1, 0.3)⟩, 
              ⟨y, (0.8, 0.7, 0.7, 0.5), (0, 0, 0.2, 0.3)⟩, 
              ⟨z, (0.7, 0.6, 0.6, 0.4), (0.2, 0.3, 0.3, 0.4)⟩} 

 

B = {⟨x, (0.7, 0.6, 0.5, 0.5), (0.1, 0.1, 0.2, 0.2)⟩, 
                    ⟨y, (0.6, 0.5, 0.4, 0.4), (0.2, 0.3, 0.3, 0.2)⟩, 
                    ⟨z, (0.6, 0.5, 0.3, 0.1), (0.2, 0.3, 0.6, 0.3)⟩} 

 

Now we find distance measure between Multi vague sets A and B. 

Given (G, .) is a group and x, y and z G 

we find hesitant values, include in A and B, then 

 

A = {⟨x, (0.9, 0.8, 0.7, 0.6), (0, 0.1, 0.1, 0.3), (0.1, 0.1, 0.2, 0.1)⟩, 
                   ⟨y, (0.8, 0.7, 0.7, 0.5), (0, 0, 0.2, 0.3), (0.2, 0.3, 0.1, 0.2)⟩, 
                   ⟨z, (0.7, 0.6, 0.6, 0.4), (0.2, 0.3, 0.3, 0.4), (0.1, 0.1, 0.1, 0.2)⟩} 

 

B = {⟨x, (0.7, 0.6, 0.5, 0.5), (0.1, 0.1, 0.2, 0.2), (0.2, 0.3, 0.3, 0.3)⟩, 
                    ⟨y, (0.6, 0.5, 0.4, 0.4), (0.2, 0.3, 0.3, 0.2), (0.2, 0.2, 0.3, 0.4)⟩, 
                    ⟨z, (0.6, 0.5, 0.3, 0.1), (0.2, 0.3, 0.6, 0.3), (0.2, 0.2, 0.1, 0.6)⟩} 

 

1) The Manhattan distance. 

 

d𝑀𝑎𝑛(A, B) =
1

𝑛
∑ ∑(|tiA(xj) − tiB(xj)| + |fiA(x𝑗) − fiB(x𝑗)| + |πiA(x𝑗) − πiB(x𝑗)|)

𝑘

𝑖=1

𝑛

𝑗=1
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3 

3 

3 

3 

 

 
Here dimension = k = 4 and number of elements = n = 3 

d Man (A, B) = 1 [{|0.9 − 0.7| + |0.8 − 0.6| + |0.7 − 0.5| + |0.6 − 0.5| + 

|0 − 0.1| + |0.1 − 0.1| + |0.1 − 0.2| + |0.3 − 0.2| + 

|0.1 − 0.2| + |0.1 − 0.3| + |0.2 − 0.3| + |0.1 − 0.3|} + 

{|0.8 − 0.6| + |0.7 − 0.5| + |0.7 − 0.4| + |0.5 − 0.4| + 

|0 − 0.2| + |0 − 0.3| + |0.2 − 0.3| + |0.3 − 0.2| + 

|0.2 − 0.2| + |0.3 − 0.2| + |0.1 − 0.3| + |0.2 − 0.4|} + 

{|0.7 − 0.6| + |0.6 − 0.5| + |0.6 − 0.3| + |0.4 − 0.1| + 

|0.2 − 0.2| + |0.3 − 0.3| + |0.3 − 0.6| + |0.4 − 0.3| + 

|0.1 − 0.2| + |0.1 − 0.2| + |0.1 − 0.1| + |0.2 − 0.6|}] 

 

= 1 [{(0.2 + 0.2 + 0.2 + 0.1) + (0.1 + 0 + 0.1 + 0.1) + (0.1 + 0.2 + 0.1 + 0.2)} 

+ {(0.2 + 0.2 + 0.3 + 0.1) + (0.2 + 0.3 + 0.1 + 0.1) + (0 + 0.1 + 0.2 + 0.2)} 

+ {(0.1 + 0.1 + 0.3 + 0.3) + (0 + 0 + 0.3 + 0.1) + (0.1 + 0.1 + 0 + 0.4)}] 

 

= 1 [(0.9 + 0.3 + 0.6) + (0.8 + 0.7 + 0.5) + (0.8 + 0.4 + 0.6)] 

∴ d Man (A, B) =5.6 = 1.86 

1) The Normalized Manhattan distance. 
 

d𝑛−𝑀𝑎𝑛(A, B) =
1

𝑛𝑘
∑ ∑(|tiA(xj) − tiB(xj)| + |fiA(x𝑗) − fiB(x𝑗)| + |πiA(x𝑗) − πiB(x𝑗)|)

𝑘

𝑖=1

𝑛

𝑗=1

 

 

2) The Euclidean distance. 
 

dE(A, B) = √
1

𝑛
∑ ∑(|tA(xi) − tB(xi)|2 + |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2)

𝑘

𝑖=1

n

𝑗=1

 

3) The Normalized Euclidean distance. 

 

dn−E(A, B) = √
1

𝑛𝑘
∑ ∑ (|tiA(xj) − tiB(x𝑗)|

2
+ |fiA(x𝑗) − fiB(xj)|

2
+ |πiA(xj) − πiB(x𝑗)|

2
)

𝑘

𝑖=1

n

𝑗=1

 

 

 

Note: We observed that 

1) 0 ≤ 𝑑𝐻(𝐴, 𝐵) ≤ 𝑛 

2) 0 ≤ 𝑑𝑛−𝐻(𝐴, 𝐵) ≤ 1 

3) 0 ≤ 𝑑𝐻(𝐴, 𝐵) ≤ √𝑛 

4) 0 ≤ 𝑑𝑛−𝐸(𝐴, 𝐵) ≤ 1 

 

4 Model of vague sets in pattern Recognition 

In this process, a set of patterns in (vague in nature) and another unknown pattern called is given (also 

vague in nature). Both the set of the patterns and that of the pattern and that of the sample are within 
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the same feature space or attributes ’m’. The task is to find the distance between each of the patterns and the 

sample. The smallest or shortest distance between any of the patterns and the sample shows that, the same 
belongs to that pattern. This is what pattern recognition. 

Assume that there exist m patterns given by 

𝐴𝑙 = {< 𝑥𝑗 , 𝑡𝐴𝑙
(𝑥𝑗), 𝑓𝐴𝑙

(𝑥𝑗), 𝜋𝐴𝑙
(𝑥𝑗) | 𝑥𝑗 ∈ 𝑋 } , j=1,2,…,n., l=1,2,…m.  

Here    𝑡𝑖𝐴: 𝐺 → [0, 1], 𝑓𝑖𝐴: 𝐺 → [0, 1]  𝑎𝑛𝑑  𝜋𝑖𝐴: 𝐺 → [0, 1] are membership,  

non- membership and hesitant fuzzy mappings. And 𝑡𝑖𝐴 + 𝑓𝑖𝐴 + 𝜋𝑖𝐴 = 1 

𝐵 = {<  𝑥𝑗 , 𝑡𝐵𝑥𝑗, 𝑓𝐵𝑥𝑗 , 𝜋𝐵𝑥𝑗 >| 𝑥𝑗 ∈ 𝑋} be the sample to be tested. 

According to E.Smidt, J.Kacprzyk [22, 24], see the following example. 

Let X = {x1, x2, x3, x4}, n = 4, be the attributes. 
Let A1, A2, A3, A4, A5, and A6 are classification of different building materials. B is another kind of 

unknown building material. 

Let x1 = Compressive strength (CS) 

x2 = Thermal Insulation (TI) 

x3 = Cost Efficiency (CE) 

x4 = Durability (D) 

A1 = {⟨tA1 (x1), fA1 (x1), πA1 (x1)⟩, ⟨tA1 (x2), fA1 (x2), πA1 (x2)⟩, 

⟨tA1 (x3), fA1 (x3), πA1 (x3)⟩, ⟨tA1 (x4), fA1 (x4), πA1 (x4)⟩} 

A2 = {⟨tA2 (x1), fA2 (x1), πA2 (x1)⟩, ⟨tA2 (x2), fA2 (x2), πA2 (x2)⟩, 
⟨tA2 (x3), fA2 (x3), πA2 (x3)⟩, ⟨tA2 (x4), fA2 (x4), πA2 (x4)⟩} 

A3 = {⟨tA3 (x1), fA3 (x1), πA3 (x1)⟩, ⟨tA3 (x2), fA3 (x2), πA3 (x2)⟩, 
⟨tA3 (x3), fA3 (x3), πA3 (x3)⟩, ⟨tA3 (x4), fA3 (x4), πA3 (x4)⟩} 

A4 = {⟨tA4 (x1), fA4 (x1), πA4 (x1)⟩, ⟨tA4 (x2), fA4 (x2), πA4 (x2)⟩, 

⟨tA4 (x3), fA4 (x3), πA4 (x3)⟩, ⟨tA4 (x4), fA4 (x4), πA4 (x4)⟩} 

A5 = {⟨tA5 (x1), fA5 (x1), πA5 (x1)⟩, ⟨tA5 (x2), fA5 (x2), πA5 (x2)⟩, 
⟨tA5 (x3), fA5 (x3), πA5 (x3)⟩, ⟨tA5 (x4), fA5 (x4), πA5 (x4)⟩} 

A6 = {⟨tA6(x1), fA6(x1), πA6(x1)⟩, ⟨tA6 (x2), fA6 (x2), πA6(x2)⟩, 

⟨tA6(x3), fA6(x3), πA6 (x3)⟩, ⟨tA6 (x4), fA6 (x4), πA6 (x4)⟩} 

 

Equivalently, 

Al = {⟨tAl (x1), fAl (x1), πAl (x1)⟩, ⟨tAl(x2), fAl (x2), πAl (x2)⟩, 
⟨tAl (x3), fAl (x3), πAl (x3)⟩, ⟨tAl (x4), fAl (x4), πAl (x4)⟩} 

 
where l = 1, 2, 3, 4, 5 and 6.  
 
 
Let’s see the values, 

A1 = {(1, 0, 0), (0.8, 0, 0.2), (0.6, 0.2, 0.2), (0.5, 0.2, 0.3)} 

A2 = {(0.7, 0.1, 0.2), (0.9, 0.1, 0), (0.8, 0.1, 0.1), (0.6, 0.2, 0.2)} 

A3 = {(0.6, 0.3, 0.1), (0.7, 0.1, 0.2), (1, 0, 0), (0.9, 0.1, 0)} 

A4 = {(0.9, 0, 0.1), (0.6, 0.3, 0.1), (0.6, 0.3, 0.1), (1, 0, 0)} 

A5 = {(0.5, 0.3, 0.2), (0.9, 0, 0.1), (1, 0, 0), (0.7, 0.1, 0.2)} 

A6 = {(0.8, 0, 0.2), (0.7, 0.2, 0.1), (0.7, 0.1, 0.2), (0.4, 0.3, 0.3)} 

and B  = {(0.6, 0.3, 0.1), (0.5, 0.3, 0.2), (0.9, 0.1, 0), (0.8, 0.2, 0)} 
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Here tA1 (x1) represents the membership value of compressive strength of Al pattern. fAl (x1) 

represents the non- membership value of compressive strength of Al pattern. πAl (x1) represents the 

indeterminacy value of compressive strength of Al pattern. 

 
tAl (x2) represents the membership value of thermal insulation of Al pattern. fAl (x2) represents the 

non- membership value of thermal insulation of Al pattern. πAl (x2) represents the indeterminacy 

value of thermal insulation of Al pattern. 

 
tAl (x3) represents the membership value of cost efficiency of Al pattern. fAl (x3) represents the non- 
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membership value of cost efficiency of Al pattern. πAl (x3) represents the indeterminacy value of cost 

efficiency of Al pattern. 

 
and tAl (x4) represents the membership value of durability of Al pattern. fAl (x4) represents the non- 

membership value of durability of Al pattern. πAl (x4) represents the indeterminacy value of 

durability of Al pattern. 

Here l = 1, 2, 3, 4, 5 and 6 

 
Now, we check which pattern will be closer to unknown pattern B. for that we use normalized 

Euclidean distance formula, 

dn−E(A, B) = √
1

2n
∑(|tA(xi) − tB(xi)|2

n

i=1

+ |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2) 

Here X= {x1, x2, x3, x4}   

 

           dn−E(A, B) = √
1

8
∑(|tA(xi) − tB(xi)|2

4

i=1

+ |fA(xi) − fB(xi)|2 + |πA(xi) − πB(xi)|2) 

 

 

                          dn−E(A, B) = square root of {
1

8
(|tA(x1) − tB(x1)|2 + |fA(x1) − fB(x1)|2 +            |πA(x1) −

πB(x1)|2)+(|tA(x2) − tB(x2)|2 + |fA(x2) − fB(x2)|2 + |πA(x2) − πB(x2)|2) + 

           (|tA(x3) − tB(x3)|2 + |fA(x3) − fB(x3)|2 + |πA(x3) − πA(x3)|2) +           
(|tA(x4) − tB(x4)|2 + |𝑓A(x4) − tB(x4)|2 + |πA(x4) − πB(x4)|2)} 

 

And A is replaced by A1 and A6 every time. 

 

1) dn−E(A1, B) = square root of {
1

8
[(| 1 − 0.6|2 + |0 − 0.3 |2 + |0 − 0.1 |2) + (|0.8 − 0.5 |2 +

|0.2 − 0.3 |2 + |0 − 0.2 |2) + (|0.6 − 0.9 |2 + |0.2 − 0.1 |2 + |0.2 − 0 |2) + (0.5 − 0.8| |2 +
|0.2 − 0.2 |2 + |0.3 − 0 |2)]} 

 

                    = square root of {
1

8
[(0.16 + 0.09 + 0.01) + (0.09 + 0.01 + 0.04) + (0.09 + 0.01 + 0.04) +

(0.09 + 0 + 0.09) 

                    = √
1

8
(0.26 + 0.14+0.18) =√

1

8
(0.72) = √0.09 = 0.3 

dn−E(A1, B) = 0.3 

similarly calculating remaining values, we have 

 

1 𝑑𝑛−𝐸(𝐴1, 𝐵) 0.30 

2 𝑑𝑛−𝐸(𝐴2, 𝐵) 0.22 

3 𝑑𝑛−𝐸(𝐴3, 𝐵) 0.12 

4 𝑑𝑛−𝐸(𝐴4, 𝐵) 0.23 

5 𝑑𝑛−𝐸(𝐴5, 𝐵) 0.21 

6 𝑑𝑛−𝐸(𝐴6, 𝐵) 0.26 
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Since the shortest distance between pattern A3  is much closer to pattern B, hence pattern B 

 belongs to pattern    A3. 

 

5 Model of Multi vague sets in pattern Recognition 

Now, we introduce the Multi vague set concept in each attribute, by introducing these values, the 

distance will be more accurate and precise, more over considering all parameters in minute level. 

𝐴𝑙 = {< 𝑡𝐴𝑙
(𝑥𝑗), 𝑓𝐴𝑙

(𝑥𝑗), 𝜋𝐴𝑗
(𝑥𝑗) >| 𝑥𝑗  ∈ 𝑋 } becomes  

𝐴𝑙 = {< 𝑡𝐴𝑖𝑙
(𝑥𝑗)}𝑖=1

𝑘 , 𝑓𝐴𝑖𝑙
(𝑥𝑗)}𝑖=1

𝑘 , 𝜋𝐴𝑖𝑗
(𝑥𝑗)}𝑖=1

𝑘 >| 𝑥𝑗  ∈ 𝑋 }𝑗=1
𝑛   and 

 l = 1,2..., m. Here 𝑡𝑖𝐴𝑙
: 𝑋 → [0, 1],  𝑓𝑖𝐴𝑙

: 𝑋 → [0, 1]  and  𝜋𝑖𝐴𝑙
: 𝑋 → [0, 1]    membership, non- membership 

and hesitant margin respectively. So, we modify the above example with multi dimension k = 5, l= 1, 

2,3,4,5 and 6, also j = 1,2,3 and 4. 

i.e., 𝐴𝑙 = {[ <  𝑡1𝐴𝑙
(𝑥𝑗), 𝑡2𝐴𝑙

(𝑥𝑗), 𝑡3𝐴𝑙
(𝑥𝑗), 𝑡4𝐴𝑙

(𝑥𝑗), 𝑡5𝐴𝑙
(𝑥𝑗) >, 

                   <  𝑓1𝐴𝑙
(𝑥𝑗), 𝑓2𝐴𝑙

(𝑥𝑗), 𝑓3𝐴𝑙
(𝑥𝑗), 𝑓4𝐴𝑙

(𝑥𝑗), 𝑓5𝐴𝑙
(𝑥𝑗) >, 

<  𝜋1𝐴𝑙
(𝑥𝑗), 𝜋2𝐴𝑙

(𝑥𝑗), 𝜋3𝐴𝑙
(𝑥𝑗), 𝜋4𝐴𝑙

(𝑥𝑗), 𝜋5𝐴𝑙
(𝑥𝑗) >]| 𝑥𝑗  ∈ 𝑋 }𝑗=1

4  

or  𝐴𝑙 = {[ <  𝑡1𝐴𝑙
(𝑥1), 𝑡2𝐴𝑙

(𝑥1), 𝑡3𝐴𝑙
(𝑥1), 𝑡4𝐴𝑙

(𝑥1), 𝑡5𝐴𝑙
(𝑥1) >, 

                   <  𝑓1𝐴𝑙
(𝑥1), 𝑓2𝐴𝑙

(𝑥1), 𝑓3𝐴𝑙
(𝑥1), 𝑓4𝐴𝑙

(𝑥1), 𝑓5𝐴𝑙
(𝑥1) >, 

                   <  𝜋1𝐴𝑙
(𝑥1), 𝜋2𝐴𝑙

(𝑥1), 𝜋3𝐴𝑙
(𝑥1), 𝜋4𝐴𝑙

(𝑥1), 𝜋5𝐴𝑙
(𝑥1) >] 

[ <  𝑡1𝐴𝑙
(𝑥2), 𝑡2𝐴𝑙

(𝑥2), 𝑡3𝐴𝑙
(𝑥2), 𝑡4𝐴𝑙

(𝑥2), 𝑡5𝐴𝑙
(𝑥2) >, 

                                <  𝑓1𝐴𝑙
(𝑥2), 𝑓2𝐴𝑙

(𝑥2), 𝑓3𝐴𝑙
(𝑥2), 𝑓4𝐴𝑙

(𝑥2), 𝑓5𝐴𝑙
(𝑥2) >, 

<  𝜋1𝐴𝑙
(𝑥2), 𝜋2𝐴𝑙

(𝑥2), 𝜋3𝐴𝑙
(𝑥2), 𝜋4𝐴𝑙

(𝑥2), 𝜋5𝐴𝑙
(𝑥2) >] 

[ <  𝑡1𝐴𝑙
(𝑥3), 𝑡2𝐴𝑙

(𝑥3), 𝑡3𝐴𝑙
(𝑥3), 𝑡4𝐴𝑙

(𝑥3), 𝑡5𝐴𝑙
(𝑥3) >, 
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                            <  𝑓1𝐴𝑙
(𝑥3), 𝑓2𝐴𝑙

(𝑥3), 𝑓3𝐴𝑙
(𝑥3), 𝑓4𝐴𝑙

(𝑥3), 𝑓5𝐴𝑙
(𝑥3) >, 

<  𝜋1𝐴𝑙
(𝑥3), 𝜋2𝐴𝑙

(𝑥3), 𝜋3𝐴𝑙
(𝑥3), 𝜋4𝐴𝑙

(𝑥3), 𝜋5𝐴𝑙
(𝑥3) >] 

[ <  𝑡1𝐴𝑙
(𝑥4), 𝑡2𝐴𝑙

(𝑥4), 𝑡3𝐴𝑙
(𝑥4), 𝑡4𝐴𝑙

(𝑥4), 𝑡5𝐴𝑙
(𝑥4) >, 

                             <  𝑓1𝐴𝑙
(𝑥4), 𝑓2𝐴𝑙

(𝑥4), 𝑓3𝐴𝑙
(𝑥4), 𝑓4𝐴𝑙

(𝑥4), 𝑓5𝐴𝑙
(𝑥4) >, 

<  𝜋1𝐴𝑙
(𝑥4), 𝜋2𝐴𝑙

(𝑥4), 𝜋3𝐴𝑙
(𝑥4), 𝜋4𝐴𝑙

(𝑥4), 𝜋5𝐴𝑙
(𝑥4) >] 

[ <  𝑡1𝐴𝑙
(𝑥5), 𝑡2𝐴𝑙

(𝑥5), 𝑡3𝐴𝑙
(𝑥5), 𝑡4𝐴𝑙

(𝑥5), 𝑡5𝐴𝑙
(𝑥5) >, 

                               <  𝑓1𝐴𝑙
(𝑥5), 𝑓2𝐴𝑙

(𝑥5), 𝑓3𝐴𝑙
(𝑥5), 𝑓4𝐴𝑙

(𝑥5), 𝑓5𝐴𝑙
(𝑥5) >, 

<  𝜋1𝐴𝑙
(𝑥5), 𝜋2𝐴𝑙

(𝑥5), 𝜋3𝐴𝑙
(𝑥5), 𝜋4𝐴𝑙

(𝑥5), 𝜋5𝐴𝑙
(𝑥5) >]} 

where l = 1,2,3,5 and 6. different patterns given. we subdivide each attribute as follows, 

1) Compressive Strength (CS) 

CS1:  Load bearing under static weight  

CS2: Load bearing under dynamic impact  
CS3: Resistance after water exposure 

CS4: Resistance to cracking under stress 

CS5: Strength retention after aging 

2) Thermal Insulation (TI) 

TI1: Heat conduction rate 
TI2: Performance in hot climates  

TI3: Performance in cold climates  

TI4: Thermal mass effectiveness 

TI5: Stability across temperature fluctuations 

 

3) Cost Efficiency (CE) 

CE1: Initial material cost 
CE2: Installation cost 

CE3: Maintenance over time 
CE4: Lifespan to cost ratio 

CE5: Market availability 

4) Durability (D) 

D1: Resistance to water damage 

D2: Resistance to chemical exposure 

D3: Wear and tear over time 

D4: Resistance to biological factors (mold, pests) 

D5: Resistance to extreme temperatures 

 
t1A1 (x1), f1A1 (x1), π1A1 (x1) are the membership, non- membership and hesitant margin of load bearing 

under static weight (CS1). 

t2A1 (x1), f2A1 (x1), π2A1 (x1) are the membership, non- membership and hesitant margin of load bearing 

under dynamic impact (CS2). 

t3A1 (x1), f3A1 (x1), π3A1 (x1) are the membership, non- membership and hesitant margin of resistance of 

water exposure (CS3). 

t4A1 (x1), f4A1 (x1), π4A1 (x1) are the membership, non- membership and hesitant margin of resistance to 

cracking under stress (CS4). 

t5A1 (x1), f5A1 (x1), π5A1 (x1) are the membership, non- membership and hesitant margin of strength 

retention after aging (CS5). 
 

http://www.jetir.org/


© 2026 JETIR January 2026, Volume 13, Issue 1                                                     www.jetir.org (ISSN-2349-5162) 

JETIR2601331 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e283 
 

 
t1A1 (x2), f1A1 (x2), π1A1 (x2) are the membership, non- membership and hesitant margin of heat 

conduction rate (TI1). 

t2A1 (x2), f2A1 (x2), π2A1 (x2) are the membership, non- membership and hesitant margin of performance 

in hot climates (TI2). 

t3A1 (x2), f3A1 (x2), π3A1 (x2) are the membership, non- membership and hesitant margin of performance 

in cold climates rate (TI3). 

t4A1 (x2), f4A1 (x2), π4A1 (x2) are the membership, non- membership and hesitant margin of thermal mass 

effectiveness (TI4). 

t5A1 (x2), f5A1 (x2), π5A1 (x2) are the membership, non- membership and hesitant margin of stability 

across temperature fluctuations (TI5). 
 

 
t1A1 (x3), f1A1 (x3), π1A1 (x3) are the membership, non- membership and hesitant margin of Initial cost 

material (CE1). 

t2A1 (x3), f2A1 (x3), π2A1 (x3) are the membership, non- membership and hesitant margin of installation 

cost (CE2). 

t3A1 (x3), f3A1 (x3), π3A1 (x3) are the membership, non- membership and hesitant margin of maintenance 

over time (CE3). 

t4A1 (x3), f4A1 (x3), π4A1 (x3) are the membership, non- membership and hesitant margin of life span to 

cost ratio (CE4). 

t5A1 (x3), f5A1 (x3), π5A1 (x3) are the membership, non- membership and hesitant margin of market 

availability (CE5). 
 

 
t1A1 (x4), f1A1 (x4), π1A1 (x4) are the membership, non- membership and hesitant margin of resistance to 

water damage (D1). 
t2A1 (x4), f2A1 (x4), π2A1 (x4) are the membership, non-membership and hesitant margin of resistance to 

chemical exposition. (D2). 

t3A1 (x4), f3A1 (x4), π3A1 (x4) are the membership, non- membership and hesitant margin of wear and tear 

over time. (D3). 

t4A1 (x4), f4A1 (x4), π4A1 (x4) are the membership, non- membership and hesitant margin of resistance to 

biological factors (mold, pests) (D4). 

t5A1 (x4), f5A1 (x4), π5A1 (x4) are the membership, non- membership and hesitant margin of resistance to 

extreme temperatures. (D5). 

 

Now, we define six known patterns Al and unknown pattern B. 

A1 = {⟨(0.8, 0.6, 0.4, 0.5, 0.6), (0.1, 0.2, 0.3, 0.2, 0.2), (0.1, 0.2, 0.3, 0.3, 0.2)⟩, 
                     ⟨(0.9, 0.7, 0.5, 0.7, 0.5), (0, 0.1, 0.2, 0.1, 0.3), (0.1, 0.2, 0.3, 0.2, 0.2)⟩, 
                    ⟨(0.7, 0.6, 0.8, 0.5, 0.7), (0.1, 0.2, 0.1, 0.2, 0.2), (0.2, 0.2, 0.1, 0.3, 0.1)⟩ 
                    ⟨(0.6, 0.7, 0.7, 0.8, 0.5), (0.3, 0.2, 0.2, 0.1, 0.2), (0.1, 0.1, 0.1, 0.1, 0.3)⟩} 

 

A2 = {⟨(0.6, 0.5, 0.7, 0.5, 0.7), (0.3, 0.4, 0.1, 0.2, 0.2), (0.1, 0.1, 0.2, 0.3, 0.1)⟩, 
                     ⟨(0.6, 0.5, 0.6, 0.4, 0.5), (0.2, 0.3, 0.2, 0.3, 0.3), (0.2, 0.2, 0.2, 0.3, 0.2)⟩, 
                     ⟨(0.7, 0.8, 0.5, 0.6, 0.6), (0.1, 0.1, 0.2, 0.2, 0.3), (0.2, 0.1, 0.3, 0.2, 0.1)⟩ 
                       ⟨(1, 0.7, 1, 0.7, 0.7), (0, 0.2, 0, 0.1, 0), (0, 0.1, 0, 0.2, 0.3)⟩} 

 

A3 = {⟨(0.5, 0.6, 0.7, 1, 0.9), (0.3, 0.2, 0.1, 0, 0), (0.2, 0.2, 0.2, 0, 0.1)⟩, 
                  ⟨(0.8, 0.7, 0.4, 0.3, 0.4), (0.2, 0.1, 0.4, 0.3, 0.5), (0, 0.2, 0.2, 0.4, 0.1)⟩, 
                  ⟨(0.3, 0.3, 0.5, 0.4, 0.3), (0.3, 0.3, 0.4, 0.2, 0.5), (0.4, 0.4, 0.1, 0.4, 0.2)⟩ 
                  ⟨(0.4, 0.5, 0.5, 0.6, 0.3), (0.3, 0.2, 0.3, 0.1, 0.4), (0.3, 0.3, 0.2, 0.3, 0.3)⟩} 

 

 

A4 = {⟨(0.8, 0.9, 1, 0.7, 0.8), (0.2, 0.1, 0, 0.1, 0.1), (0, 0, 0, 0.2, 0.1)⟩, 
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                   ⟨(0.7, 0.8, 0.9, 0.7, 0.6), (0.1, 0.1, 0, 0.1, 0.2), (0.2, 0.1, 0.1, 0.2, 0.2)⟩, 
                    ⟨(0.9, 1, 1, 0.9, 0.7), (0.1, 0, 0, 0, 0.2), (0, 0, 0, 0.1, 0.1)⟩ 
                    ⟨(0.8, 0.7, 0.8, 0.8, 1), (0.1, 0.2, 0, 0.1, 0), (0.1, 0.1, 0.2, 0.1, 0)⟩} 

 

 

A5 = {⟨(0.5, 0.6, 0.7, 0.6, 0.5), (0.3, 0.1, 0.1, 0.2, 0.4), (0.2, 0.3, 0.2, 0.2, 0.1)⟩, 
                    ⟨(0.4, 0.5, 0, 0.7, 0.6), (0.5, 0.3, 0.7, 0.2, 0.1), (0.1, 0.2, 0.3, 0.1, 0.3)⟩, 
                     ⟨(0.5, 0.6, 0.5, 0, 0.5), (0.2, 0.3, 0.4, 0.7, 0.2), (0.3, 0.1, 0.1, 0.3, 0.3)⟩ 
                    ⟨(0.4, 0.6, 0, 0.6, 0.7), (0.3, 0.3, 0.5, 0.1, 0.2), (0.3, 0.1, 0.5, 0.3, 0.1)⟩} 

 

A6 = {⟨(0.3, 0.4, 0.5, 0.6, 0.3), (0.6, 0.5, 0.3, 0.3, 0.5), (0.1, 0.1, 0.2, 0.1, 0.2)⟩, 
                    ⟨(0.4, 0.3, 0.7, 0, 0.5), (0.3, 0.4, 0.1, 0.5, 0.3), (0.3, 0.3, 0.2, 0.5, 0.2)⟩, 
                    ⟨(0, 0.3, 0.4, 0.5, 0), (0.7, 0.3, 0.5, 0.3, 0.5), (0.3, 0.4, 0.1, 0.2, 0.5)⟩ 
                    ⟨(0.4, 0.2, 0, 0.6, 0.7), (0.3, 0.4, 0.4, 0.3, 0.2), (0.3, 0.4, 0.6, 0.1, 0.1)⟩} 

 

B = {⟨(0.5, 0.7, 1, 0.6, 0.7), (0.3, 0.1, 0, 0.2, 0.2), (0.2, 0.2, 0, 0.2, 0.1)⟩, 
                 ⟨(0.3, 0.4, 0.5, 0.3, 0.4), (0.6, 0.5, 0.4, 0.4, 0.5), (0.1, 0.1, 0.1, 0.3, 0.1)⟩, 
                  ⟨(1, 0.8, 0.9, 0.7, 1), (0, 0.1, 0.1, 0.1, 0), (0, 0.1, 0, 0.2, 0)⟩ 
                ⟨(0.2, 0.3, 0.5, 0.3, 0.4), (0.6, 0.7, 0.4, 0.6, 0.3), (0.2, 0, 0.1, 0.1, 0.3)⟩} 
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The Normalized Euclidean distance. 

 

dn−E(A, B) = √
1

𝑛𝑘
∑ ∑ (|tiA(xj) − tiB(x𝑗)|

2
+ |fiA(x𝑗) − fiB(xj)|

2
+ |πiA(xj) − πiB(x𝑗)|

2
)

𝑘

𝑖=1

n

𝑗=1

 

 

1) dn−E(A1, B) = square root of {
1

20
[(0.32 + 0.12 + 0.62 + 0.12 + 0.12) + 
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(0.22 + 0.12 + 0.12 + 02 + 02) + (0.12 + 02 + 0.32 + 0.12 + 0.12) + 

(0.62 + 0.32 + 02 + 0.42 + 0.12) + (0.62 + 0.42 + 0.22 + 0.32 + 0.22) + 

(02 + 0.12 + 0.22 + 0.12 + 0.12) + (0.32 + 0.22 + 0.12 + 0.22 + 0.32) + 

(0.12 + 0.12 + 02 + 0.12 + 0.22) + (0.22 + 0.12 + 02 + 0.12 + 0.22) + 

(0.42 + 0.42 + 0.22 + 0.52 + 0.12) + (0.32 + 0.52 + 0.22 + 0.52 + 0.12)
+ (0.12 + 0.12 + 02 + 02 + 02)]} 

 

=square root of {
1

20
[(0.09 + 0.01 + 0.36 + 0.01 + 0.01) + ( 0.04 + 0.01 + 0.09) + 

(0.01 + 0.09 + 0.01 + 0.01 ) +(0.36+0.09+0.16+0.01) + (0.36+0.16+0.04+0.09+0.04) 

+(0.01+0.04+0.01+0.01) + (0.09+0.04+0.01+0.04+0.09) + (0.01+0.01+0.01+0.04) + 

(0.04+0.01+0.01+0.01+0.01) + (0.16+0.16+0.04+0.25+0.01) + 

(0.09+0.25+0.04+0.25+0.01) + (0.01+0.01)]} 

 

=square root of {
1

20
[0.48 + 0.14 + 0.12 + 0.62 + 0.69 + 0.07 + 0.27 + 0.07 + 0.08 + 

0.62+0.64+0.02]} 

 

= √
1

20
( 3.82) = √0.191 = 0.4370 

  ∴  𝑑𝑛−𝐸(𝐴1, 𝐵) = 0.4370 
 

 

2) dn−E(A2, B) = square root of {
1

20
[(0.12 + 0.22 + 0.32 + 0.12 + 02) + 

(02 + 0.32 + 0.12 + 02 + 02) + (0.12 + 0.12 + 0.22 + 0.12 + 02) + 

(0.32 + 0.12 + 0.12 + 0.12 + 0.12) + (0.42 + 0.22 + 0.22 + 0.12 + 0.22) + 

(0.12 + 0.12 + 0.12 + 02 + 0.12) + (0.32 + 02 + 0.42 + 0.12 + 0.42) + 

(0.12 + 02 + 0.12 + 0.12 + 0.32) + (0.22 + 02 + 0.32 + 02 + 0.12) + 

(0.82 + 0.42 + 0.52 + 0.42 + 0.32) + (0.62 + 0.52 + 0.42 + 0.52 + 0.32)
+ (0.22 + 0.12 + 0.12 + 0.12 + 02)]} 

 

                  =square root of {
1

20
[(0.01 + 0.04 + 0.09 + 0.01) + (0.09 + 0.01) + 

              (0.01+0.01+0.04+0.01)+(0.09+0.01+0.01+0.01+0.01)+(0.16+0.04+0.04+0.01+0.04) 

                      +(0.01+0.01+0.01+0.01)+(0.09+0.16+0.01+0.16)+(0.01+0.01+0.01+0.09)+ 

                     (0.04+0.09+0.01)+(0.64+0.16+0.25+0.16+0.09)+(0.36+0.25+0.16+0.25+0.09) 

               +(0.04+0.01+0.01+0.01)]} 

     =square root of {
1

20
[0.15 + 0.10 + 0.07 + 0.13 + 0.29 + 0.04 + 0.42 + 0.12 +

                                     0.14 + 1.3 + 1.11 + 0.07]} 

= √
1

20
(3.94 ) = √0.197 = 0.4438 

  ∴  𝑑𝑛−𝐸(𝐴2, 𝐵) = 0.4438 
 

 

3) dn−E(A3, B) = square root of {
1

20
[(02 + 0.12 + 0.32 + 0.42 + 0.22) + 

(02 + 0.12 + 0.12 + 0.22 + 0.22) + (02 + 02 + 0.22 + 0.22 + 02) + 

(0.52 + 0.32 + 0.12 + 02 + 02) + (0.42 + 0.42 + 02 + 0.12 + 02) + 

(0.12 + 0.12 + 0.12 + 0.12 + 02) + (0.52 + 0.52 + 0.42 + 0.32 + 0.72) + 

(0.32 + 0.22 + 0.32 + 0.12 + 0.52) + (0.22 + 0.32 + 0.12 + 0.22 + 0.22) + 

(0.22 + 0.22 + 02 + 0.32 + 0.12) + (0.32 + 0.52 + 0.12 + 0.52 + 0.12)
+ (0.12 + 0.32 + 0.12 + 0.22 + 02)]} 

 

=square root of {
1

20
[(0.01 + 0.09 + 0.16 + 0.04) + (0.01 + 0.01 + 0.04 + 0.04) + 

(0.04+0.04)+(0.25+0.09+0.01)+(0.16+0.16+0.01)+(0.01+0.01+0.01+0.01)+ 

(0.25+0.25+0.16+0.09+0.49)+(0.09+0.04+0.09+0.01+0.25)+ 
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(0.04+0.09+0.01+0.04+0.04)+(0.04+0.04+0.09+0.01)+ 

(0.09+0.25+0.01+0.25+0.01) + (0.01+0.09+0.01+0.04)]} 

 

=square root of {
1

20
[0.30 + 0.10 + 0.08 + 0.35 + 0.33 + 0.04 + 1.24 + 0.48 +                            0.22 +

 0.18+0.61+0.15]} 

= √
1

20
( 4.08) = √0.204 = 0.4516 

   ∴  𝑑𝑛−𝐸(𝐴3, 𝐵) = 0.4516 
 

 

4) dn−E(A4, B) = square root of {
1

20
[(0.32 + 0.22 + 02 + 0.12 + 0.12) + 

(0.12 + 02 + 02 + 0.12 + 0.12) + (0.22 + 0.22 + 02 + 02 + 02) + 

(0.42 + 0.42 + 0.42 + 0.42 + 0.22) + (0.52 + 0.42 + 0.42 + 0.32 + 0.32) + 

(0.12 + 02 + 02 + 0.12 + 0.12) + (0.12 + 0.22 + 0.12 + 0.22 + 0.32) + 

(0.12 + 0.12 + 0.12 + 0.12 + 0.22) + (02 + 0.12 + 02 + 0.12 + 0.12) + 

(0.62 + 0.42 + 0.32 + 0.52 + 0.62) + (0.52 + 0.52 + 0.42 + 0.52 + 0.32)
+ (0.12 + 0.12 + 0.12 + 02 + 0.32)]} 

 

=square root of {
1

20
[(0.09 + 0.04 + 0.01 + 0.01) + (0.01 + 0.01 + 0.01) + 

(0.04+0.04)+(0.16+0.16+0.16+0.16+0.04)+ (0.25+0.16+0.16+0.09+0.09)+ 

(0.01+0.01+0.01)+(0.01+0.04+0.01+0.04+0.09)+(0.01+0.01+0.01+0.01+0.04)+ 

(0+0.01+0+0.01+0.01)+(0.36+0.16+0.09+0.25+0.36)+ 

(0.25+0.25+0.16+0.25+0.09)+(0.01+0.01+0.01+0.09)]} 

=square root of {
1

20
[0.15 + 0.03 + 0.08 + 0.68 + 0.75 + 0.03 + 0.19 + 0.08 + 

0.03 + 1.22 + 1 + 0.12]} 

= √
1

20
( 4.36) = √0.218 = 0.4669 

     ∴  𝑑𝑛−𝐸(𝐴4, 𝐵) = 0.4669 
 

5) dn−E(A5, B) = square root of {
1

20
[(02 + 0.12 + 0.32 + 02 + 0.22) + 

(02 + 02 + 0.12 + 02 + 0.22) + (02 + 0.12 + 0.22 + 02 + 02) + 

(0.12 + 0.12 + 0.52 + 0.42 + 0.22) + (0.12 + 0.22 + 0.32 + 0.22 + 0.42) + 

(02 + 0.12 + 0.22 + 0.22 + 0.22) + (0.52 + 0.22 + 0.42 + 0.72 + 0.52) + 

(0.22 + 0.22 + 0.32 + 0.62 + 0.22) + (0.32 + 02 + 0.12 + 0.12 + 0.32) + 

(0.22 + 0.32 + 0.52 + 0.32 + 0.32) + (0.32 + 0.42 + 0.12 + 0.52 + 0.12)
+ (0.12 + 0.12 + 0.42 + 0.22 + 0.22)]} 

 

=square root of {
1

20
[(0.01 + 0.09 + 0.04) + (0.01 + 0.04) + 

(0.01+0.01+0.25+0.16+0.04)+(0.36+0.16+0.04+0.09+0.04)+(0.01+0.04+0.09+0.04+0.16)+ 

(0.01+0.04+0.04+0.04)+(0.25+0.04+0.16+0.49+0.25)+(0.04+0.04+0.09+0.36+0.04)+ 

(0.09+0.01+0.01+0.09)+(0.04+0.09+0.25+0.09+0.09)+(0.09+0.16+0.01+0.25+0.01)+ 

(0.01+0.01+0.16+0.04+0.04)]} 

 

=square root of {
1

20
[0.14 + 0.05 + 0.05 + 0.47 + 0.34 + 0.13 + 1.19 + 0.57 +

                          0.20 +0.56+0.52+0.26]} 

 

= √
1

20
(4.48 ) = √0.224 = 0.4733 

      ∴  𝑑𝑛−𝐸(𝐴5, 𝐵) = 0.4733 
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6) dn−E(A6, B) = square root of {
1

20
[(0.22 + 0.32 + 0.52 + 02 + 0.42) + 

(0.32 + 0.42 + 0.32 + 0.12 + 0.32) + (0.12 + 0.12 + 0.22 + 0.12 + 0.12) + 

(0.12 + 0.12 + 0.22 + 0.32 + 0.12) + (0.32 + 0.12 + 0.32 + 0.12 + 0.22) + 

(0.22 + 0.22 + 0.12 + 0.22 + 0.12) + (12 + 0.52 + 0.52 + 0.22 + 0.12) + 

(0.72 + 0.22 + 0.42 + 0.22 + 0.52) + (0.32 + 0.32 + 0.12 + 02 + 0.52) + 

(0.22 + 0.12 + 0.52 + 0.32 + 0.32) + (0.32 + 0.32 + 02 + 0.32 + 0.12)
+ (0.12 + 0.42 + 0.52 + 02 + 0.22)]} 

 

 

=square root of {
1

20
[(0.04 + 0.09 + 0.25 + 0.16) + (0.09 + 0.16 + 0.09 + 0.01 + 0.09) + 

(0.01+0.01+0.04+0.01+0.01)+(0.01+0.01+0.04+0.09+0.01)+(0.09+0.01+0.09+0.01+0.04)+ 

(0.04+0.04+0.01+0.04+0.01)+(1+0.25+0.25+0.04+1)+(0.49+0.04+0.16+0.25)+ 

(0.09+0.09+0.01+0.25)+(0.04+0.01+0.25+0.09+0.09)+ 

(0.09+0.09+0.09+0.01)+(0.01+0.16+0.25+0.04)]} 

 

=square root of {
1

20
[0.54 + 0.44 + 0.08 + 0.16 + 0.24 + 0.14 + 2.54 + 0.98 + 0.44 + 0.48 + 0.28 +

0.46]} 

 

= √
1

20
(6.78 ) = √0.339 = 0.5822 

    ∴  𝑑𝑛−𝐸(𝐴6, 𝐵) = 0.5822 
 

 

 

similarly calculating remaining values, we have 

 

1 𝑑𝑛−𝐸(𝐴1, 𝐵) 0.4370 

2 𝑑𝑛−𝐸(𝐴2, 𝐵) 0.4438 

3 𝑑𝑛−𝐸(𝐴3, 𝐵) 0.4516 

4 𝑑𝑛−𝐸(𝐴4, 𝐵) 0.4669 

5 𝑑𝑛−𝐸(𝐴5, 𝐵) 0.4733 

6 𝑑𝑛−𝐸(𝐴6, 𝐵) 0.5822 
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From the table and graph, the smallest distance is 0.4370 for A1, meaning B most likely belongs to 
pattern A1, the largest distance is 0.5822 for A6, indicating B is least similar to A6. 

 

6 Conclusion 

This is a typical pattern recognition step where classification is based on the minimum distance. This 
confirms the effectiveness of the proposed distance based Multi vague pattern recognition model, which 

can be applied in real life domains like material classification, medical diagnosis, and decision-making 
systems where uncertainty is inherent. This Multi vague sets applied to pattern recognition is more 

effective method than that of fuzzy set model and vague set model. 
Overall, the model demonstrates improved classification accuracy by capturing Multi-dimensional 

uncertainty, offering a strong alternative to traditional pattern recognition approaches. 
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