



# IMPROVING POWER EFFICIENCY AND BLOCKING PROBABILITY IN 5G MM-WAVE MIMO SYSTEMS THROUGH ADAPTIVE BEAMFORMING

**T.JYOTHI KUMARI<sup>1</sup>, D.RAJITHA<sup>2</sup>, V.PAVANI<sup>3</sup>, P.ROHIT<sup>4</sup>, N.SIVALEELA<sup>5</sup>**

<sup>1</sup>Assistant Professor, Department of Electronics & Communication Engineering, Chaitanya College of Engineering, JNTU-GV University, Vishakhapatnam, India

<sup>2</sup>Assistant Professor, Department of Electronics & Communication Engineering, Miracle Educational Society Group of Institutions, JNTU-GV University, Vishakhapatnam, India

<sup>3</sup>Assistant Professor, Department of Electronics & Communication Engineering, Ballari Institute of Technology and Management, Ballari, Karnataka, India

<sup>4</sup>Assistant Professor, Department of Electronics & Communication Engineering, Chaitanya College of Engineering, JNTU-GV University, Vishakhapatnam, India

<sup>5</sup>Assistant Professor, Department of Electronics & Communication Engineering, Chaitanya College of Engineering, JNTU-GV University, Vishakhapatnam, India

## ABSTRACT

Next-generation broadband wireless networks must minimize energy consumption and hardware complexity while also achieving great spectral efficiency. Addressing this difficulty, this work develops an adaptive hybrid analog–digital beamforming framework for fifth-generation (5G) millimeter-wave (mmWave) MIMO cellular systems. The suggested method uses analog on-off excitation to selectively activate radiating elements within each vertical antenna array, dynamically synthesizing beams based on traffic demands in real time. By doing away with costly and mechanically complicated beam-steering systems, this method greatly simplifies the transceiver architecture. To enable effective digital processing, each vertical array is part of a circular antenna design and is powered by a separate radio-frequency (RF) chain. A unique system-level simulator that complies with the most recent 3GPP 5G channel models is created in order to thoroughly assess system performance. To offer statistically sound performance evaluations, extensive Monte Carlo simulations are carried out for various MIMO configurations. The suggested adaptive beamforming technique significantly improves important wireless performance metrics, such as user blocking probability and total downlink transmission power, according to simulation results. Notably, depending on the permitted transmission overhead, the adaptive technique considerably lowers the number of active antenna elements for a MIMO setup consisting of 15 vertical antenna arrays with 10 radiating elements per array as compared to traditional static beam grid approaches. Additionally, significant reductions in downlink power consumption and blockage probability are obtained when the number of radiating elements is fixed. Overall, the results show that adaptive hybrid beamforming is a viable option for future mm-Wave network architectures since it provides a scalable, energy-efficient, and hardware-simplified solution for dense and complicated 5G cellular installations.

**Keywords:** 5G Technology, Adaptive Hybrid Beamforming, Massive MIMO, Millimeter Wave Communications

## I. INTRODUCTION

The way individuals interact, communicate, and obtain information has changed significantly as a result of the development of wireless communication. The globe has progressed from 1G's simple analog voice systems to 5G's incredibly rapid broadband access over the last few decades. In order to meet the ever-increasing needs for high-speed internet, real-time applications, and huge device connections, each new generation of wireless technology has delivered improvements in data rates, latency, spectral

efficiency, and connectivity. The utilization of millimeter-wave communication, which permits multi-gigabit data speeds, ultra-low latency, and large network capacity, is one of the most important developments in 5G technology. The usage of millimeter-wave (mm-Wave) communication, which runs in the 24 GHz to 100 GHz frequency range is much higher than the sub-6 GHz bands used in earlier generations is one of the key characteristics of 5G. Multi-gigabit-per-second (Gbps) data rates made possible by mm-Wave's higher frequency spectrum open up new opportunities for cloud gaming, real-time industrial automation, immersive augmented reality (AR) and virtual reality (VR), and ultra-high-speed internet. Furthermore, mm-Wave communication provides improved spectral efficiency, which enables wireless networks to manage more connections at once. This is essential for Industry 4.0 applications, IoT deployments, and smart cities.

Nevertheless, there are a number of difficulties with mm-Wave communication despite its benefits. Maintaining seamless connectivity in urban and interior areas is challenging due to the high-frequency signals' limited reach, poor penetration through obstructions, and increased route loss. In order to overcome these constraints, 5G infrastructure has included cutting-edge technology like beamforming, massive MIMO (Multiple-Input Multiple-Output), and network densification to guarantee dependable and effective wireless communication.

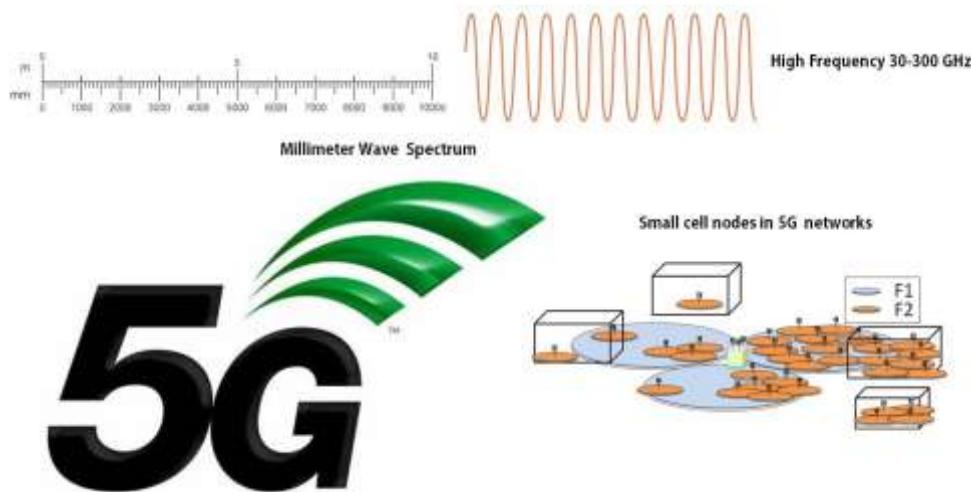



Figure 1: 5G MM-Wave Technology

## II. BEAM FORMING IN MASSIVE MIMO

Beamforming in 5G is made possible in large part by massive MIMO technology. Massive MIMO greatly increases network capacity and spectral efficiency by using dozens to hundreds of antennas at the base station, in contrast to typical MIMO systems that use a small number of antennas. By facilitating spatial multiplexing, dynamic beam adaption, and interference reduction, beamforming improves system performance in huge MIMO networks. Spatial multiplexing, which enables several users to be fed on the same frequency channel without creating interference, is one of the main characteristics of beamforming in massive MIMO. This is accomplished by dynamic beam direction adjustments made possible by real-time Channel State Information (CSI) updates. Furthermore, by minimizing inter-user interference and improving signal quality, sophisticated beamforming algorithms like Zero-Forcing (ZF) beamforming and Minimum Mean Square Error (MMSE) beamforming further improve system performance. In crowded metropolitan locations, where user density is high and signal blockages are frequent, the combination of beamforming and massive MIMO plays a critical role in guaranteeing stable, high-speed connectivity. These solutions greatly enhance user experience in crowded places, stadiums, and smart city infrastructures by dynamically modifying beam patterns based on network demand.



Figure 2: Beamforming in Massive MIMO

### III PROPOSED ADAPTIVE BEAMFORMING ARCHITECTURE

This Paper highlights effective antenna array management and dynamic beam allocation in their Adaptive Hybrid Beamforming (HBF) method for 5G-MIMO mm-Wave wireless networks. Beamforming techniques are essential for reducing path loss, interference, and multipath fading in millimeter-wave bands due to the growing need for high-speed wireless communication. Through a hybrid analog-digital design, the suggested method seeks to maximize the trade-off between hardware complexity and beamforming performance, guaranteeing excellent spectral efficiency and low power consumption.

The proposed adaptive beamforming structure consists of multi-layer beamforming architecture, combining baseband processing, RF front-end control, and antenna array management is shown in figure.3. In order to process NS data streams and transform them into NRF RF outputs, the Base Station (BS) uses a baseband digital precoder (FBB). The system operates under a diversity-combining transmission scheme, where:  $NS = Kb$  Where, Kb represents the number of mobile stations (MSs) per Base stations bits. This architecture can switch between spatial multiplexing modes with ease, enabling multi-user connectivity without sacrificing beamforming effectiveness. The system primarily supports diversity-combining transmission techniques but can be extended to spatial multiplexing when needed. The device improves coverage and efficiency by constantly changing beam directions, particularly in densely populated areas.

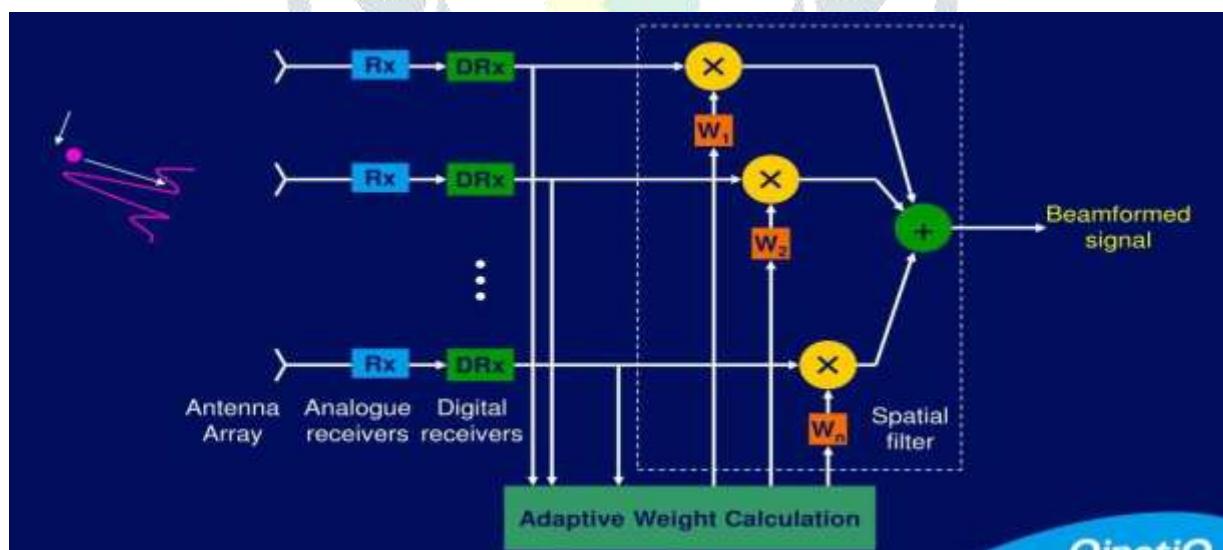



Figure 3: Proposed Adaptive Beamforming Structure

## Analog Beamforming Mechanism

Channel state information (CSI) is the foundation of the analog beamforming process is shown in figure.4, which guarantees ideal beam alignment and low interference.



Figure 4: Analog Beamforming Mechanism

The essential elements of this system consist of

**RF Chain Distribution:** To ensure efficient signal propagation, the FBB matrix (dimensions  $K_b \times v$ ) connects each of the  $v$  RF chains to a selection of transmitting antennas arranged in a vertical array ( $w$  elements).

**Beam Generation:** Adaptive beams allow for dynamic beam adjustment in response to changing user locations and ambient conditions because they are generated based on real-time CSI feedback. By using on-off analog beamforming algorithms, this lowers hardware complexity.

**Circular Array Structure:** The system has a circular array topology, with  $v$  RF chains spaced equally apart at  $a = 360/v$ . This arrangement enhances signal reception at various angles and offers consistent beam coverage.

**Dual-Polarization (DP) Antennas:** By ensuring a dual-polarized system and reducing cross-polarization interference, crossed dipole (CD) antenna arrays increase diversity gain. The antennas are appropriate for 5G deployment scenarios since they are tuned for 28 GHz millimeter Wave operation.

## Adaptive Beamforming Algorithm

The Proposed Adaptive Beamforming Algorithm minimizes power consumption while optimizing beam allocation in real-time. The Adaptive Beamforming Algorithm's steps are listed.

**Initialize Fixed Beam Grid (FGoB):** The base station begins with a predetermined Fixed Grid of Beams (FGoB) that divides coverage into three  $120^\circ$ -separated sectors per base station.

**PRB Request Processing:** The system determines if the current beam configuration can meet the necessary SNR (Signal-to-Noise Ratio) when a new mobile station (MS) requests Physical Resource Blocks (PRBs).

**Beam Modification:** The system dynamically reconfigures the beam to enhance signal quality while minimizing interference if the SNR requirements are not satisfied.

**Interference Management:** The system modifies beam directions, power levels, or active antenna elements to reduce signal deterioration if interference with current Mobile stations is detected.

**Energy Efficiency Optimization:** Only the essential antennas are engaged while maintaining Quality of Service (QoS) thanks to the system's updating of active antenna elements, which reduces power consumption.

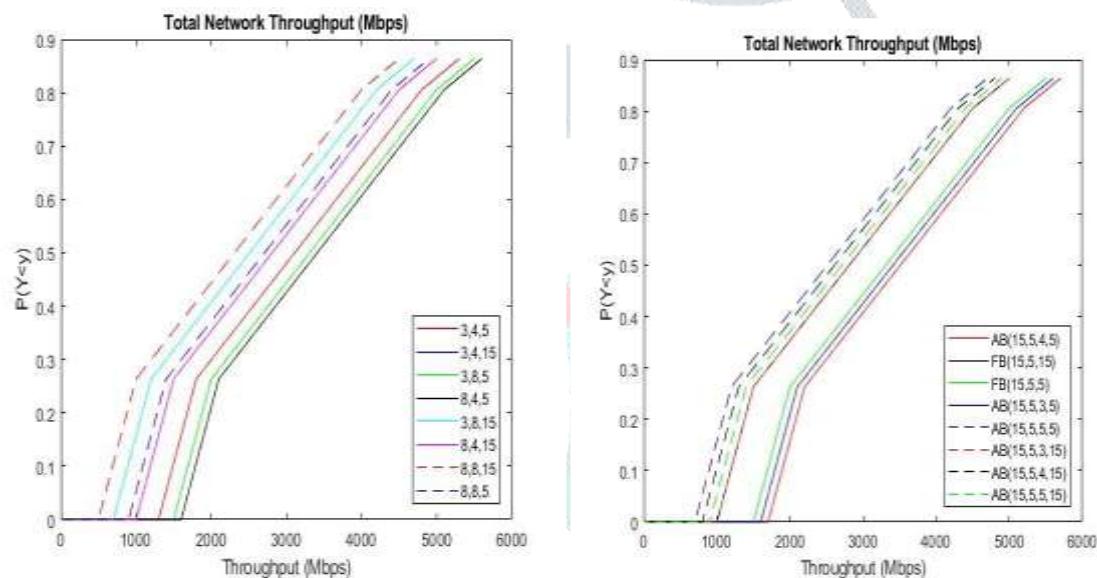
## III ELECTROMAGNETIC ANALYSIS AND SIMULATION SETUP

The Method of Moments (MoM) is used to run a full-wave electromagnetic simulation in order to verify the beamforming performance. In order to accurately mimic the behavior of 3D antenna arrays, the simulation takes into account mutual coupling effects. Two beamforming techniques are examined; they are

**Fixed Grid of Beams (FGoB):** Static beam allocation is achieved by a traditional method in which beams are preassigned according to certain parameters ( $w, q, v$ , and  $a$ ).

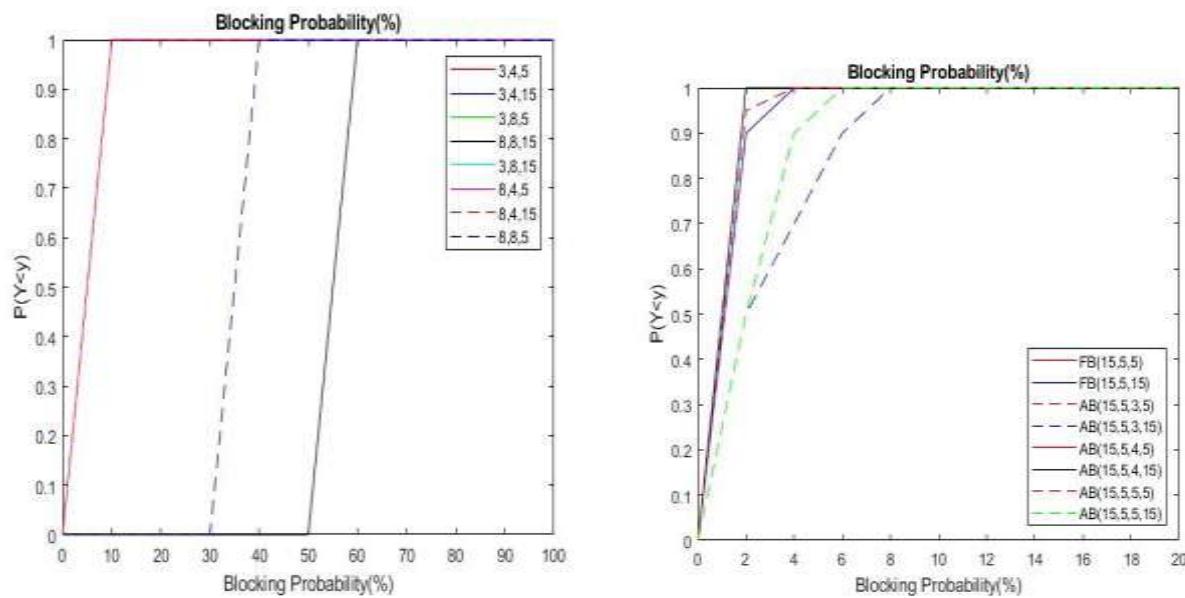
**Adaptive Grid of Beams (AGoB):** Optimal signal coverage is ensured via a dynamic beam allocation technique that modifies parameters like  $a$  and  $w$  in real-time based on user distribution.

**Simulation parameters include:**


- Frequency: 28 GHz
- Antenna Type: Crossed dipole array
- Beam Scanning Range:  $0^\circ - 360^\circ$
- Number of Active Antennas: Dynamic, based on CSI feedback

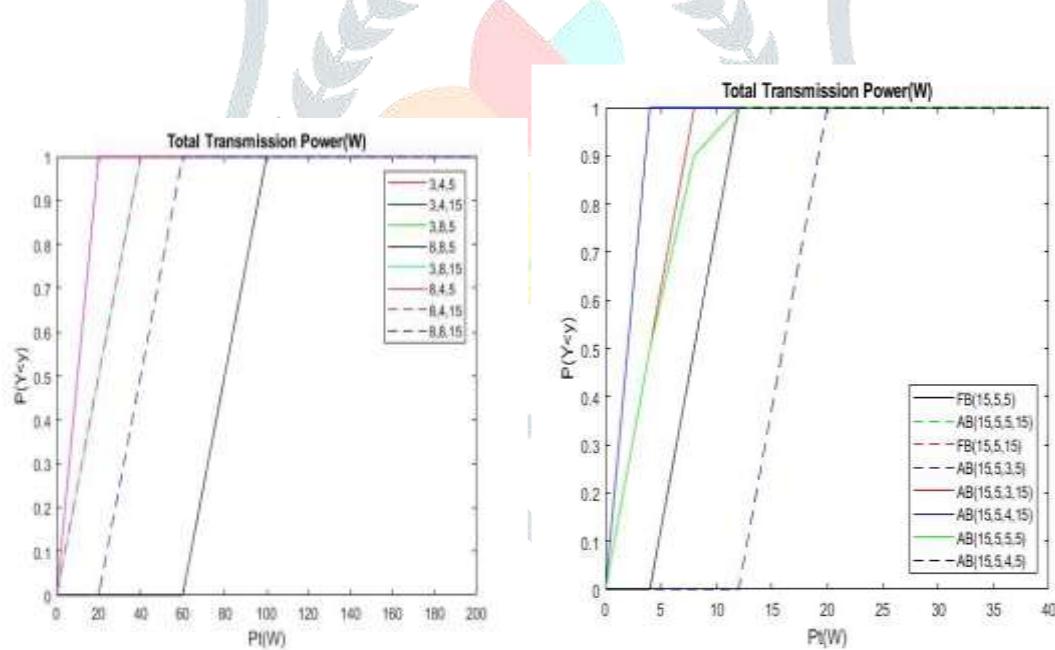
For the analysis of beam efficiency, power consumption, and throughput performance, these simulations are essential.

## IV SIMULATION RESULTS


This paper provides simulation results for 5G-MIMO mm-Wave wireless cellular networks using the suggested adaptive hybrid beamforming technique. The results, obtained using MATLAB R-2022b simulation software, indicate the optimization of network throughput, blocking probability, total transmission power, and active radiating elements to boost overall system performance.

The comparison of the overall network throughput for various parameter combinations and settings is displayed in Figure 5. "Total Network Throughput" refers to the total data transmission rate achieved within the network, including aspects such as bandwidth allotment, beamforming approach, and interference mitigation. In 5G-MIMO mm-Wave wireless systems, a higher throughput denotes better data handling capabilities and network efficiency. Understanding the trade-offs between performance, power consumption, and user experience in next-generation mm-Wave networks can be gained by evaluating throughput under various beamforming scenarios.




**Figure 5:** Total Network Throughput of Proposed Adaptive Hybrid Beamforming

The comparison of blocking likelihood in various network designs and parameter settings is shown in Figure 6. "Blocking Probability" is the probability that a user's connection request will be rejected because there aren't enough network resources. Blocking likelihood can be decreased by optimizing beamforming methods and resource allocation, guaranteeing improved quality of service and increased user connectivity. In high-density wireless situations, a lower blocking probability guarantees smooth connectivity and fewer call losses by indicating improved resource allocation and enhanced network performance.



**Figure 6:** Blocking Probability of Proposed Adaptive Hybrid Beamforming

The comparison of total transmission power for various setups and parameter values is shown in Figure 7. "Total Transmission Power" refers to the total power needed to send signals via a network. In 5G-MIMO networks, an optimized beamforming technique improves energy economy by lowering power usage while preserving signal integrity. Sustainable and economical network operation depends on lowering transmission power without sacrificing coverage. This comparison demonstrates how well the suggested hybrid beamforming technique reduces power consumption while maintaining reliable communication.



**Figure 7:** Total Transmission Power of Proposed Adaptive Hybrid Beamforming

The comparison of active radiating elements for different designs is shown in Figure 8. The term "Active Radiating Elements" describes the quantity of antenna elements that are actively involved in the transmission and reception of signals. For 5G-MIMO mm-Wave communication systems to achieve a balance between energy efficiency, signal quality, and overall network performance, these factors must be optimized.



**Figure 8:** Active Radiating Elements of Proposed Adaptive Hybrid Beamforming

## VI CONCLUSION

By optimizing important factors like throughput, transmission power, blocking probability, and active radiating elements, the proposed Adaptive Hybrid Beamforming Approach for 5G-MIMO mm-Wave Wireless Cellular Networks successfully improves network performance. Improved spectrum efficiency is indicated by increased network throughput, and better resource allocation and less congestion are confirmed by lower blocking probability. Furthermore, energy efficiency is guaranteed without sacrificing performance thanks to the improved transmission power. The method is more effective because of the adaptive control of active radiating elements, which further reduces power waste. Overall, by tackling important an issue in mm-Wave networks, this strategy advances 5G and beyond. According to the findings, adaptive hybrid beamforming can play a significant role in enabling high-capacity, energy-efficient, and interference-resilient wireless communication systems, opening the door for upcoming wireless technologies like 6G and beyond.

## REFERENCES

1. S. Lavdas, P. Gkonis, Z. Zinonos, P. Trakadas and L. Sarakis, "Throughput Based Adaptive Beamforming in 5G Millimeter Wave Massive MIMO Cellular Networks via Machine Learning," *2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)*, Helsinki, Finland, 2022, pp. 1-7, doi: 10.1109/VTC2022-Spring54318.2022.9860566.
2. A. N. Uwaechia and N. M. Mahyuddin, "A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges," *IEEE Access*, vol. 8, pp. 62 367–62 414, 2020.
3. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," *IEEE Commun. Mag.*, vol. 52, no. 2, pp. 186–195, 2014.
4. E. Vlachos, G. C. Alexandropoulos, and J. Thompson, "Wideband MIMO channel estimation for hybrid beamforming millimeter wave systems via random spatial sampling," *IEEE J. Sel. Topics Signal Process.*, vol. 13, no. 5, pp. 1136–1150, 2019.
5. R. K. Kushwaha, M. S. A. Ansari, J. V. N. Ramesh and P. Rohit, "MIMO Optimized Algorithm to Develop the Energy Efficiency Underwater," *2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAms)*, Bangalore, India, 2023, pp. 1-5, doi: 10.1109 / ICCAMS 60113. 2023. 10525874.
6. M. A. Albreem, A. H. A. Habbash, A. M. Abu-Hudrouss, and S. S. Ikki, "Overview of precoding techniques for massive MIMO," *IEEE Access*, vol. 9, pp. 60 764–60 801, 2021.
7. L. You, J. Xiong, A. Zappone, W. Wang, and X. Gao, "Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT," *IEEE Trans. on Signal Processing*, vol. 68, pp. 2645–2659, 2020.
8. P. Rohit, A. Datta and M. Satyanarayana, "Design of High Gain Metasurface Antennas using Hybrid Atomic Orbital Search and Human Mental Search Algorithm for IoT Application," *2023 10th International Conference on Signal Processing and Integrated Networks (SPIN)*, Noida, India, 2023, pp. 20-24, doi: 10.1109 / SPIN 57001. 2023. 10116841.
9. Y. Chen, X. Wen, and Z. Lu, "Achievable spectral efficiency of hybrid beamforming massive MIMO systems with quantized phase shifters, channel non-reciprocity and estimation errors," *IEEE Access*, vol. 8, pp. 71 304–71 317, 2020.
10. O. Saatlou, M. O. Ahmad, and M. N. S. Swamy, "Spectral efficiency maximization of a single cell massive MU–MIMO downlink TDD system by appropriate resource allocation," *IEEE Access*, vol. 7, pp. 182 758–182 771, 2019.
11. P. Rohit, A. Datta and M. S. Narayana, "Design of Circular Microstrip Antenna with Metasurface Superstate for Wifi Applications," *2024 IEEE Wireless Antenna and Microwave Symposium (WAMS)*, Visakhapatnam, India, 2024, pp. 1-5, doi: 10.1109/WAMS59642.2024.10527949.
12. W. Yu, T. Wang, and S. Wang, "Multi-label learning based antenna selection in massive MIMO systems," *IEEE Trans. on Veh. Tech.*, vol. 70, no. 7, pp. 7255–7260, 2021.

13. P. Rohit, D. Rajitha, V. Pavani, T. J. Kumari, M. Satyanarayana and K. Suresh, "Printed Array Antenna with Metasurface Using Superstrate Technique for IOT Applications," *2025 IEEE Wireless Antenna and Microwave Symposium (WAMS)*, Chennai, India, 2025, pp. 1-5, doi: 10.1109/WAMS64402.2025.11158983.

14. V. Pavani, D. Rajitha, P. Rohit, T. J. Kumari, K. Suresh and M. Satyanarayana, "Design of Flexible Antenna Array Using Cardboard Paper Substrate for WIFI&WLAN Applications," *2025 IEEE Wireless Antenna and Microwave Symposium (WAMS)*, Chennai, India, 2025, pp. 1-4, doi: 10.1109/WAMS64402.2025.11158490.

15. T. Prem Bosco, P. Rohit, M. Satyanarayana and K. Anitha, "Design of Circularly Polarized E-Slot Aperture Coupled Dielectric Resonator Antenna for Wideband Applications," *2023 International Conference on Microwave, Optical, and Communication Engineering (ICMOCE)*, Bhubaneswar, India, 2023, pp. 1-5, doi: 10.1109/ICMOCE57812.2023.10165708

16. H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-learning-based millimeter-wave massive MIMO for hybrid precoding," *IEEE Trans. on Veh. Tech.*, vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

17. P. Rohit, T. J. Kumari, V. Pavani, D. Rajitha, Design of frequency reconfigurable slotted antenna by using teaching learning based optimization (TLBO) algorithm (2025)

18. Rohit, P., Datta, A. and Satyanarayana, M. (2025), Optimized Graph Sample and Aggregate-Attention Network-Based High Gain Meta Surface Antenna Design for IoT Application. *Int J Commun Syst*, 38: e6043. <https://doi.org/10.1002/dac.6043>

19. S. Lavdas, P. K. Gkonis, Z. Zinonos, P. Trakadas, and L. Sarakis, "An adaptive hybrid beamforming approach for 5G–MIMO mmWave wireless cellular networks," *IEEE Access*, vol. 9, pp. 127 767–127 778, 2021.

20. Penki, Rohit & Dr.N.Jagadeesan, & N, Yogesh & Govindachar, Narayanaswamy. (2025). WIRELESS COMMUNICATION SYSTEM. 10.5281/zenodo.17618342.

