

SYNTHESIS AND CHARACTERIZATION OF ZnO NANO PARTICLES BY USING CITRUS SINENSIS PEEL EXTRACT

P. Kayalvizhi

Assistant Professor, Department of physics, Adhiyaman Arts and Science College for Women, Uthangarai, Srinivasa Nagar, Uthangarai (T.k), Krishnagiri (D.t)-635207. India.

ABSTRACT

The synthesis of zinc oxide nano particles with the use of fruit peel is a promising alternative to traditional chemical method. The green synthesis of zinc oxide nano particles using peel extract from Citrus Sinensis (Orange fruit). It acts as reducing agent for synthesis of ZnO because orange fruit contain citric acid, as main source in its peel. This method is non-toxic and eco-friendly. The biologically synthesized ZnO nano particles were characterized by UV-Visible spectroscopy to analyze the absorption patterns, Fourier transform infrared spectroscopy (FTIR) is used for analyzing the functional groups and scanning electron microscopy (SEM) & XRD.

Key words: Citrus Sinensis, UV, FTIR, SEM, XRD

1. INTRODUCTION

Since organic antibacterial agents are sensitive to processing conditions such as high temperature and pressure, in recent years, inorganic antibacterial agents have become a new area of research interest for the control of microbes. Antibacterial activity is still strong even at low concentrations of inorganic materials, particularly metal oxides. Compared to organic antibacterial agents, the main advantages of inorganic antibacterial agents are their good stability at high temperatures and pressures and their long shelf-life. Currently, the most widely used inorganic antibacterial materials are metallic nano particles and metal oxide nanoparticles.

Zinc oxide is a semiconducting inorganic material with three different crystal structures: wurtzite, zinc blende, and rocksalt. At ambient conditions, the structure of wurtzite is thermodynamically stable, with every zinc atom being tetrahedrally coordinated with four oxygen atoms. With a wide band gap of 3.1–3.3 eV zinc oxide has great potential for application in many fields, such as biosensors, cosmetics, drug carriers, and antibacterial agents. ZnO can be synthesized by many different methods, such as sol-gel processing, homogeneous precipitation, mechanical milling, organometallic synthesis, the microwave method, spray pyrolysis, thermal evaporation, and mechanochemical synthesis. However, these kinds of methods usually use organic solvents and toxic reducing agents, the majority of which are highly reactive and harmful to the environment. Therefore, in order to minimize the impact on the environment, green synthesis processes have been used to synthesize ZnO nanoparticles (ZnO NPs). Green synthesis is a method to produce nanoparticles using microorganisms and plants with biomedical applications. This method has many advantages, such as environmental friendliness, cost-effectiveness, biocompatibility, and safety. Additionally, many studies have proved that ZnO NPs made using green synthesis processes have strong antibacterial properties.

Orange fruit is one of the most productive fruit in the world. Orange fruit peel, as the main by-product of citrus, is rich in a variety of natural anti-oxidants. Therefore, the extract of orange peel is considered to be

used as a stabilizer to prepare ZnO NPs. However, ZnO NPs green synthesis based on extracts of orange fruit peel are not studied fully. Particularly, the influence of pH value and annealing temperature on morphology and properties of ZnO NPs by green synthesis till lacks of understanding. Herein, ZnO NPs were synthesized *via* a green process using orange fruit peel extract and investigated the influence of pH and annealing temperature on morphology and antibacterial activities. The morphology and structure of the ZnO NPs were characterized using a transmission electron microscope (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, the antibacterial activity of ZnO nanofluids was tested against *S. aureus* and *E. coli* via a broth dilution method. In order to optimize the bactericidal activity of the ZnO NPs, measurements were carried out with various types of ZnO NPs fabricated at different annealing temperatures and pH levels.

2. MATERIALS

Orange was purchased from local market in uthangarai town. Zinc Sulphate was purchased from krishnagiri, distilled water was purchased and used for further process.

2.1 Synthesis of ZnO:

The synthesis procedure consists of three simple steps.

i) Preparation of Orange Peel Extract

ii) Preparation of Zinc Sulphate Solution

iii) Preparation of ZnO Nano particles

2.2 Preparation of Orange Peel Extract:

Orange Peel was collected and crushing it and converted into powder form. 12 g of orange peel extract was added with 100 ml of deionized water in 250 ml of beaker. Then the solution was stirrer for 1 hour. The extract was filtered.

Fig. Crushing orange peel and its extract

2.3 Preparation of Zinc Sulphate Solution:

7g of Zinc Sulphate was added with 100 ml of deionized water and stirrer for 30 min. Then Zinc Sulphate Solution was obtained.

2.4 Preparation of ZnO Nano particles

Orange peel extract is added with Zinc Sulphate Solution and stirrer for 4 hours. Then Sodium Carbonate was added drop wise into it, and maintained the pH level 12. Then the nano particles formation occurs and settled at the bottom of the beaker. Then nano particles were filtered and oven dried for 12 hrs. ZnO nano particles was obtained.

3. RESULT AND DISCUSSION:

In this result and discussion section clearly explain about the particle nature, the particle size, shape, and absorption band, functional groups by using the characteristics results of XRD, FT-IR, UV-Visible spectroscopy and SEM analysis.

3.1 X-RAY DIFFRACTION ANALYSIS:

The X-ray diffraction is used to measure of the nano particles. The average grain size of the sample was estimated with the help of Scherer's equation using the diffraction intensity of peak. In fig (5.1) XRD pattern of synthesized ZnO NPs. The ZnO peaks present at (31.71), (34.55), (36.31), (47.48), (56.69), (62.82), (67.79), (76.85) is miller indexed (100), (002), (101), (102), (110), (103), (112), (202) and it is found Hexagonal crystal structure.

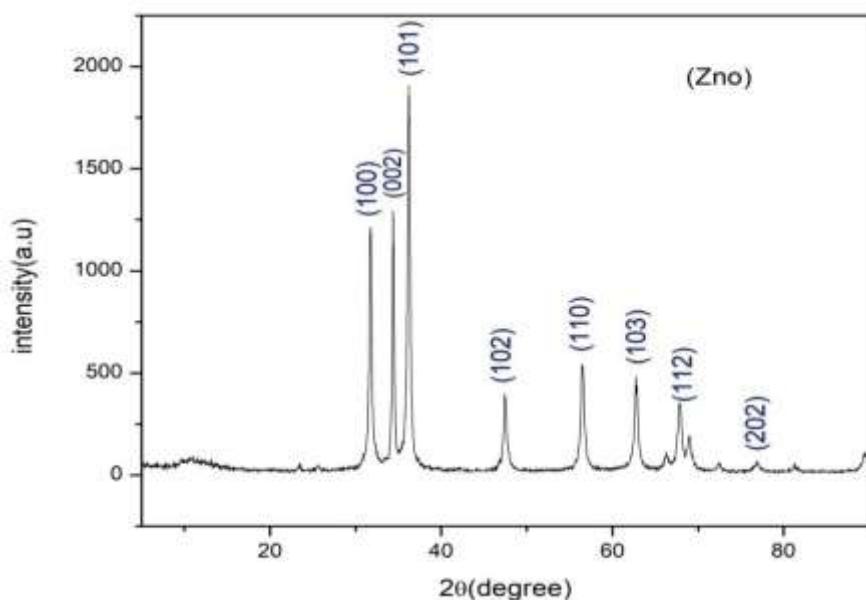


Fig:3.1 :XRD Patten of ZnO nano particels

5.2 FOURIER TRANSFORM – INFRARED SPECTROSCPY:

Fourier transforms infrared spectroscopy measurements are carried out to identify the functional group of synthesized compound. The FTIR spectrum of zinc oxide nano particles was recorded. The peak at 3410.53 cm^{-1} , 2928.23 cm^{-1} , 1602.13 cm^{-1} , 1434.17 cm^{-1} , 1126.23 cm^{-1} , 878.29 cm^{-1} , 553.56 cm^{-1} .

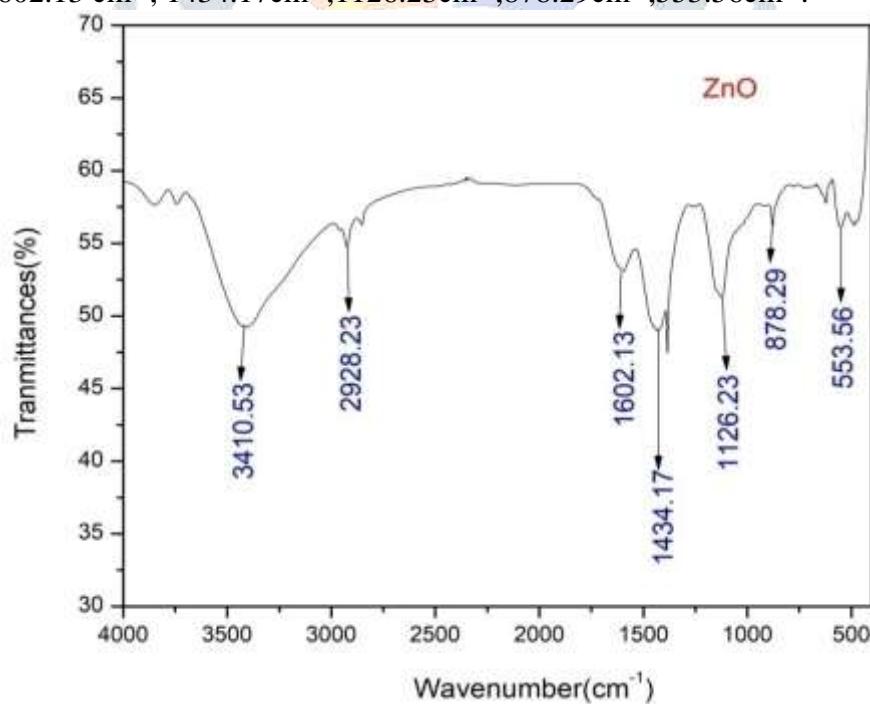
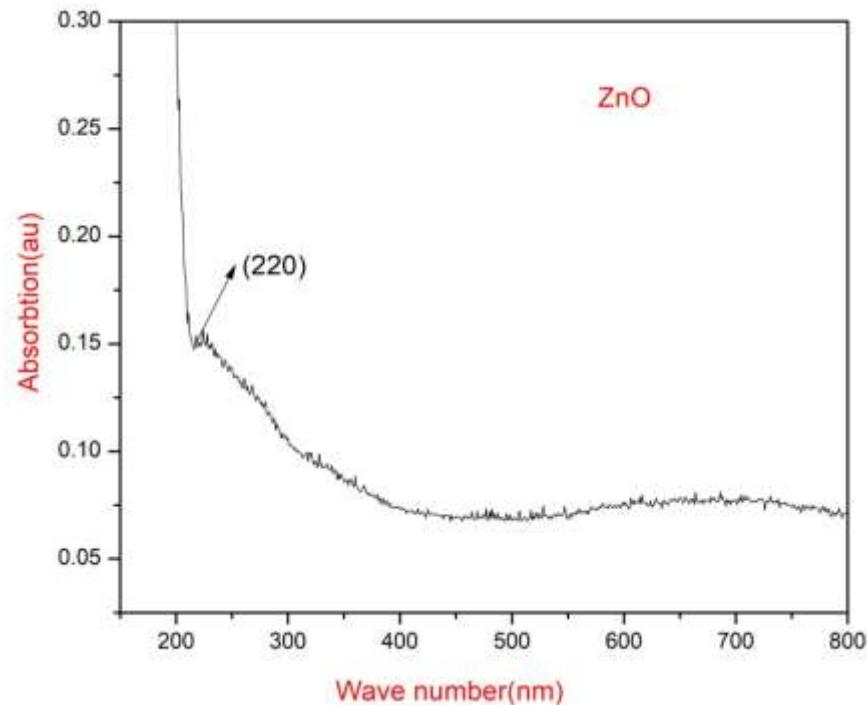



Fig 3.2 Fourier transforms infrared spectroscopy

5.3 UV- VISIBLE ABSORBTION SPECTRUM ANALYSIS:

The absorption spectrum of the synthesized zinc oxide nano particles with the absorption peak around 220nm. It indicates that ZnO nano particles displays excitation absorption (at 220 nm) due to their large excitation binding energy at room temperature. The sharp bands of zinc colloids were observed at 220 nm, which proves that the zinc ion is efficiently reduced by the orange peel extract. The wavelength of 220nm

absorption peak confirms the accuracy of blue-shifted absorption spectrum with respect to the bulk value (220nm) of the ZnO nano particles, due to the quantum confinement effect, which is good agreement with the previous report.

Fig 3.3 UV-visible absorption spectral analysis.

5.4 SCANNING ELECTRON MICROSCOPY ANALYSIS:

SEM is one of the techniques for the surface study of the samples and it gives important information regarding the growth mechanism of the particles the entire SEM picture clearly shows the average size of the nano particles in the order of nanometer size. The morphology of the synthesized particles measured by SEM is given in fig (5.4). The shape of the ZnO nano particles is turned over into spherical shape.

Fig 3.4 SEM images of ZnO nano particle

CONCLUSION

The synthesized nano particles were characterized by different analytical techniques such as UV-visible, FTIR, XRD, and SEM. The UV-visible spectrum finding the band gap energy values 5.6 eV and the absorption peaks at 220. The XRD analysis confirmed the zinc oxide nano particles structure was hexagonal and the particle size was 27.3 nm. The FTIR analysis confirmed the different functional group like amines, alkenes, carboxylic acids. The shape of the ZnO nano particles is turned over into spherical shape. This research provides a Cost – effective and environmentally benign alternative to conventional methods, demonstrating the potential of agricultural waste for the scalable production of ZnO nanomaterial for using various applications, including catalysis, environmental remediation and bio-sensing.

REFERENCES

[1] Kannan Badri Narayanan, Natarajan Sakthivel (2010) Biological synthesis of metal nano particles by microbes, *Adv. Colloid Interface Sci.*, 156(1-2): 1–13.

[2] Daizy Philip (2010) Honey Mediated Green Synthesis of Silver Nano particles. *Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy*, 75, 1078-1081.

[3] Daizy Philip (2010) Rapid Green Synthesis of Spherical Gold Nano particles Using Mangiferaindica Leaf. *Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy*, 77: 807-810.

[4] AniruddhaB.Patil and BhalchandraM.Bhanage (2013) Novel And Green Approach For The Nano crystalline Magnesium Oxide synthesis And Its Catalytic Performance In Claisen– Schmidt Condensation, *Catalysis Communications*, 36(5): 79-83.

[5] Jiale Huang, Qingbiao Li, Daohua Sun, Yinghua Lu, YuanboSu, Xin Yang, Huixuan Wang, Yuanpeng Wang, Wenyao Shao, Ning He, Jinqing Hong and Cuixue Chen (2007) Biosynthesis of silver and gold nano particles by novel sundried Cinnamomumcamphora leaf C. *Nano technology* : 18, 105104.

[6] BalaprasadAnkamwar, Chinmay Damle, Absar Ahmad and Murali Sastry (2005) *J Nanosci Nano technol* : 5, 1665-1671.

[7] S.Prathap Chandran, Minakshi Chaudhary, Renu Pasricha, Absar Ahmad, Murali Sastry (2006) *Biotechnol Prog* : 22, 577-583.

[8] Venkataraman Deepak, KalimuthuKalishwaralal, Sureshbabu Ram Kumar Pandian, and SangiliyandiGurunathan (2011) An insight into the bacterial biogenesis of silver nano particles, industrial production and scale-up in Rai M., Duran N. (Eds.): 'Metal nano particles in microbiology' (Springer-Verlag, Berlin, 2011), Chap. 2, pp. 17–35.

[9] Ana María Torrado, Sandra Cortés, José Manuel Salgado, Belén Max, Noelia Rodríguez, Belinda P. Bibbins, Attilio Converti, José Manuel Domínguez, (2011) Citric Acid Production From Orange Peel Wastes By Solid-State Fermentation, *Brazilian Journal of Microbiology*: 42, 394-409.

[10] Babak Sadeghi, Amir Rostami, S.S. Momeni (2015) Facile Green Synthesis of Silver Nano particles Using Seed Aqueous Extract of Pistaciaatlantica and Its Antibacterial Activity. *Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy*: 134, 326-332.

[11] Babak Sadeghi, F.Gholamhoseinpoor (2015) A Study on Stability and Green Synthesis of Silver Nano particles Using Ziziphoratenuior (Zt) Extract at Room Temperature. *Spectrochimica Acta Part A: Molecular and Bio molecular Spectroscopy*:134, 310-315.

[12] Mehdi Rahimi-Nasrabadia, Seied Mahdi Pourmortazavib, SeyedAtaollah Sadat Shandizc, FarhadAhmadid,e and Hossein Batoolif (2014) Green Synthesis of Silver Nano particles Using Eucalyptus leucoxylon Leaves Extract and Evaluating the Antioxidant Activities of the Extract. *Natural Product Research*: 28, 1964-1969.

[13] Ali Shafaghat (2014) Synthesis and Characterization of Silver Nano particles by Phytosynthesis Method and Their Biological Activity. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*: 45, 381-387.

[14] Kulkarni, A.P., Srivastava, A.A., Nagalgaon, R.K. and Zunjarao, R.S. (2012) Phytofabrication of Silver Nano particles from a Novel Plant Source and Its Application. *International Journal of Biological & Pharmaceutical Research*: 3(3), 417-421.

[15] Peter Logeswari, SivagnanamSilambarasan, Jayanthi Abraham (2015) Synthesis of Silver Nano particles Using Plants Extract and Analysis of Their Antimicrobial Property. *Journal of Saudi Chemical Society*: 19, 311-317.

[16] S. Rajesh , D. Patric Raja , J.M. Rathi and K. Sahayaraj (2012) Biosynthesis of Silver Nano particles Using *Ulva fasciata* (Delile) Ethyl Acetate Extract and Its Activity against *Xanthomonas campestris* pv. *Malvacearum*. *Journal of Bio pesticides* : 5, 119-128.

[17] G. Sharmila, M. Thirumurugan and C. Muthukumaran, Green synthesis of ZnO nano particles using *Tecomacastanifolia* leaf extract: Characterization and evaluation ofits antioxidant, bactericidal and anticancer activities, *Microchem. J.*, 2019, 145, 578–587.

[18] N.AinSamat and R. Md Nor, Sol-gel synthesis of zinc oxide nano particles using *Citrusaurantifolia* extracts, *Ceram. Int.*,2013, 39(SUPPL.1), 1–4.

[19] F. Davar, A. Majedi and A. Mirzaei, Green synthesis of ZnO nano particles and its application in the degradation ofsome dyes, *J. Am. Ceram. Soc.*, 2015, 98(6), 1739–1746.

[20] M.Ramesh, M.Anbuvannan and G.Viruthagiri, Green synthesis of ZnO nano particles using Solanum nigrum leaf extract and their antibacterial activity, *Spectrum. Acta, Part A*, 2014, 136(B), 864–870.

[21] N.Verma, S.Bhatia and R.K. Bedi, Role of pH on electrical, optical and photocatalytic properties of ZnO based nano particles, *J. Mater. Sci. Mater. Electron.*, 2017, 28(13), 9788–9797.

[22] P. S. Kumar, et al., Biodegradability study and pH influence on growth and orientation of ZnO nano rods via aqueous solution process, *Appl. Surf. Sci.*, 2012, 258(18), 6765–6771.

[23] M. J. Chithra and M. S. K. Pushpanathan, Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nano particles Prepared by Chemical Precipitation Method, *Acta Metall. Sin. (Engl. Lett.)*, 2015, 28(3), 394–404.

[24] H.Padalia, S. Baluja and S. Chanda, Effect of pH on Size and Antibacterial Activity of *Salvadoraoleoides* Leaf Extract- Mediated Synthesis of Zinc Oxide Nano particles, *Bio nano science*, 2017, 7(1), 40–49.

