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Abstract 

 A decomposition (G1, G2, G3 , ..., Gn) of G is said to be a Linear decomposition or 

Arithmetic Decomposition if each Gi is connected and |E(Gi)| = a+(i-1)d, for all i = 1, 2, 3, ...,n 

and a, d ∈ Z+. E.Ebin Raja Merly introduce the concept of even decomposition of a connected 

graph and investigate their variations.  The arithmetic Decomposition with a = 2 and d = 2 is 

known as Even Decomposition (ED) since the number of edges of each subgraph of G is even, 

we denote ED as (G2, G4, G6, ..., G2n). In this paper, we study the Even Decomposition (ED) of 

special class of graph namely 𝐶𝑛 ∧ 𝐾2,   , 𝑊𝑛+1  and 𝐺𝑛. 
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1.Introduction 

In this paper, we consider simple undirected graph without loops or multiple edges.The 

concept of Continuous Monotonic Decomposition was introduced by N.Gnana Dhas and 

J.Paulraj Joseph. The concept of Arithmetic Odd Decomposition was introduced by E.Ebin Raja 

Merly and N.Gnanadhas in [2] .We introduce the concept of even decomposition of a connected 

graph and investigate their variations. 

Definition 1.1  

 Let G = (V, E) be a simple graph of order p and size q. If G1, G2, G3, ..., Gn are 

connected subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ... ∪ E(Gn), then (G1, G2, G3, ..., 

Gn) is said to be a decomposition of G. 

Definition 1.2 

A decomposition (G1, G2, G3, ..., Gn) of G is said to be continuous monotonic 

decomposition (CMD) if each Gi is connected and |E(Gi)| = i, for each i = 1, 2, 3, ..., n. 

Definition 1.3 

A decomposition (G1, G2, G3 , ..., Gn) of G is said to be a Linear decomposition or 

Arithmetic Decomposition if each Gi is connected and |E(Gi)| = a+(i-1)d, for all i = 1, 2, 3, ...,n 

and a, d ∈ Z+.. 

Definition 1.4 

The Arithmetic Decomposition of G is said to be Arithmetic Odd Decomposition(AOD) 

of G only when a = 1 and d = 2.  

Remark 1.5 

 If a = 1 and d= 2, then the number of edges of G is n2. Since the number of edges of G is 

n2, q is the sum first n odd numbers 1, 3, 5, ...,2n-1. Since the number of edges of each subgraph 

of G is odd, we denote the AOD as (G1, G3, G5, ..., G2n-1). 

2.EVEN DECOMPOSITION 
Definition 2.1 

The Arithmetic Decomposition of G is said to be Even Decomposition (ED) of G only 

when a = 2 and d = 2.  

Remark 2.2 

 If a = 2 and d= 2, then the number of edges of G is n(n+1). Since the number of edges of 

G is n(n+1), q is the sum first n even numbers 2, 4, 6, ...,2n. Since the number of edges of each 

subgraph of G is even, we denote the ED as (G2, G4, G6, ..., G2n). 
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Lemma 2.3 

Let 𝑚 ≡ 0(𝑚𝑜𝑑2).The set {2,4,6, … .2𝑚} can be partitioned into two sets S1 and S2 such 

that  

∑ 𝑥 =

𝑥∈𝑆1

∑ 𝑦 = 𝑛

𝑦∈𝑆2

 

Here 𝑚(𝑚 + 1) = 2𝑛.  

Proof 

Let 𝑚 = 2𝑘,𝑘 ≥ 1, 𝑘 ∈ Ζ. 

Case 1:k is odd , 𝑘 = 2𝜆 + 1 , 𝜆 ≥ 1 

Then 𝑚 = 2𝑘 = 2(2𝜆 + 1)and 𝑚 + 1 = 4𝜆 + 3. Hence n is odd. 

Case 2:k is even , 𝑘 = 2𝜆 , 𝜆 ≥ 1 

Proof is by induction on 𝜆.  

If 𝜆 = 1  then 𝑘 = 2, 𝑚 = 4 and 𝑛 = 10.  

Let S1 = {2, 8} and   S2 = {4, 6}. Now, 

∑ 𝑥 =

𝑥∈𝑆1

2 + 8 = 10 = 𝑛  

𝑎𝑛𝑑 ∑ 𝑦 =

𝑦∈𝑆2

4 + 6 = 10 = 𝑛 

Hence the result is true for 𝜆 = 1. 
Assume that the result is true for 𝜆 − 1. Hence the set {2,4,6, … ,2(4𝜆 − 4)} can be partitioned 

into two sets S1 and S2 such that 

∑ 𝑥 =

𝑥∈𝑆1

∑ 𝑦 = 𝑛 = (2𝜆 − 2)(4𝜆 − 3)

𝑦∈𝑆2

 

To prove the result is true for 𝜆. The set {2,4,6, … .2(4𝜆)} can be partitioned into two sets S1
́ and 

S2
́ where S1

́ = S1∪ {2(4𝜆 − 3), 2(4𝜆)} and S2
́= S2∪{2(4𝜆 − 2), 2(4𝜆 − 1)}. 

 Now,  

∑ 𝑥 = ∑ 𝑥 +

𝑥∈𝑆1𝑥∈𝑆1
́

2(4𝜆 − 3) + 2(4𝜆) 

                   = (2𝜆 − 2)(4𝜆 − 3) + 2(4𝜆 − 3) + 2(4𝜆) 

      = 8𝜆2 + 2𝜆 

      = 2𝜆(4𝜆 + 1) 

                 = 𝑛 

Similarly, 

 

∑ 𝑦 = ∑ 𝑦 +

𝑦∈𝑆2𝑦∈𝑆2
́

2(4𝜆 − 2) + 2(4𝜆 − 1) 

           = (2𝜆 − 2)(4𝜆 − 3) + 2(4𝜆 − 2) + 2(4𝜆 − 1) 

   = 8𝜆2 + 2𝜆 

   = 2𝜆(4𝜆 + 1) 

   = 𝑛 

Hence by induction the lemma is true for all 𝜆.  

Lemma 2.4 

Let 𝑚 + 1 ≡ 0(𝑚𝑜𝑑2). The set {2,4,6, … .2𝑚} can be partitioned into two sets S1 and S2 

such that 

∑ 𝑥 =

𝑥∈𝑆1

∑ 𝑦 = 𝑛

𝑦∈𝑆2

 

Here 𝑚(𝑚 + 1) = 2𝑛.  
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Proof 

Let 𝑚 + 1 = 2𝑘, 𝑘 ≥ 1, 𝑘 ∈ Ζ. 

Case 1:k is odd , 𝑘 = 2𝜆 + 1 , 𝜆 ≥ 1 

Then   𝑚 = 2𝑘 − 1 

             = 2(2𝜆 + 1) − 1 

= 4𝜆 + 1 

          and 𝑚 + 1 = 4𝜆 + 2. 

 Hence n is odd. 

Case 2:k is even , 𝑘 = 2𝜆 , 𝜆 ≥ 1 

Proof is by induction on 𝜆.  

If 𝜆 = 1then 𝑘 = 2, 𝑚 = 3 and 𝑛 = 6.  

Let S1 = {2, 4} anS2 = {6}. Now, 

∑ 𝑥 =

𝑥∈𝑆1

2 + 4 = 6 = 𝑛 𝑎𝑛𝑑 ∑ 𝑦 =

𝑦∈𝑆2

6 = 𝑛 

 

Hence the result is true if 𝜆 = 1 . Assume that the result is true for 𝜆 − 1 . Hence the set 

{2,4,6, … ,2(4𝜆 − 5)} can be partitioned into two sets S1 and S2 such that  

∑ 𝑥 =

𝑥∈𝑆1

∑ 𝑦 = 𝑛 = (2𝜆 − 2)(4𝜆 − 5)

𝑦∈𝑆2

 

To prove the result is true for 𝜆. The set {2,4,6, … ,2(4𝜆 − 1)} can be partitioned into two sets             

S1
́ and S2

́ where S1
́ = S1∪ {2(4𝜆 − 3), 2(4𝜆 − 2)} and S2

́ = S2∪{2(4𝜆 − 4), 2(4𝜆 − 1)}.  

Now,  

∑ 𝑥 = ∑ 𝑥 +

𝑥∈𝑆1𝑥∈𝑆1
́

2(4𝜆 − 3) + 2(4𝜆 − 2) = (2𝜆 − 2)(4𝜆 − 5) + 2(4𝜆 − 3) + 2(4𝜆 − 2) 

     = 8𝜆2 − 2𝜆 

     = 2𝜆(4𝜆 − 1) 

     = 𝑛. 

Similarly, 

 

∑ 𝑦 = ∑ 𝑦 +

𝑦∈𝑆2𝑦∈𝑆2
́

2(4𝜆 − 4) + 2(4𝜆 − 1) 

         = (2𝜆 − 2)(4𝜆 − 5) + 2(4𝜆 − 4) + 2(4𝜆 − 1) 

  = 8𝜆2 − 2𝜆 

  = 2𝜆(4𝜆 − 1) 

  = 𝑛. 

Hence by induction the lemma is true for all 𝜆. 
Theorem 2.5 

 For any integer n, 𝐶𝑛 ∧ 𝐾2 has an ED {𝐻2, 𝐻4, … . , 𝐻2𝑚} if and only if there exists an 

integer m satisfying the following properties:  

(i) 𝑚 = 2𝑘 𝑜𝑟 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ) 

(ii) 𝑚(𝑚 + 1) = 2𝑛 

Proof 

Let 𝐺 = 𝐶𝑛 ∧ 𝐾2. Then, |𝐸(𝐺)| = 2𝑛. Assume 𝐶𝑛 ∧ 𝐾2 has a ED {𝐻2, 𝐻4, … . , 𝐻2𝑚} 

 

Then  

|𝐸(𝐻2)| + |𝐸(𝐻4)| + ⋯ |𝐸(𝐻2𝑚)| = |𝐸(𝐺)| ⇒ 2 + 4 + ⋯ + 2𝑚 = 2𝑛 

                       2(1 + 2 + ⋯ + 𝑚) = 2𝑛 

                              2 (
𝑚(𝑚 + 1)

2
) = 2𝑛 

                                     𝑚(𝑚 + 1) = 2𝑛 

                      𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2) 
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      𝑚(𝑚 + 1) = 2𝑘, 𝑘 ≥ 1, 𝑘 ∈ ℤ 
      

𝑚 = 2𝑘 𝑜𝑟 𝑚 = 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ)  
Conversely, assume 𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2). Let 𝐺 = 𝐶𝑛 ∧ 𝐾2. 

Let 𝑉(𝐶𝑛) = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} and 𝑉(𝐾2) = (𝑣1, 𝑣2).  

Define 𝑤𝑖𝑗 = (𝑢𝑖, 𝑣𝑗)where 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 2. 

Now  

𝑉(𝐺) = {𝑤𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 2} and |𝐸(𝐺)| = 2𝑛.  

Define 

𝑇1 = {(𝑤𝑖1, 𝑤(𝑖+1)2): 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 − 𝑜𝑑𝑑} ⋃{(𝑤𝑖2, 𝑤(𝑖+1)1): 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 − 𝑒𝑣𝑒𝑛} ∪

{ (𝑤11, 𝑤𝑛2)} and 

𝑇2 = {(𝑤𝑖2, 𝑤(𝑖+1)1): 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 − 𝑜𝑑𝑑} ⋃{(𝑤𝑖1, 𝑤(𝑖+1)2): 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 −

𝑒𝑣𝑒𝑛} ⋃ { (𝑤12, 𝑤𝑛1)}.  

Here  |𝑇1| = 𝑛 and |𝑇2| = 𝑛 . Also, |𝑇1| + |𝑇2| = 2 + 4 + ⋯ + 2𝑚 = 𝑚(𝑚 + 1).By lemma 2.3 

and lemma 2.4, 

 {2,4,6, … .2𝑚} = 𝑆1 ∪ 𝑆2 where 

     

∑ 𝑥 = 𝑛 

𝑥∈𝑆1

𝑎𝑛𝑑 ∑ 𝑦 =

𝑦∈𝑆2

𝑛 

Decompose 𝑇1 and 𝑇2 into trees {𝐻𝑖 } as follows 

𝑇1 = ⋃ 𝐻𝑖

𝑖∈𝑆1

𝑎𝑛𝑑 𝑇2 = ⋃ 𝐻𝑖

𝑖∈𝑆2

 

Also,|𝐸(𝐻𝑖)| = 𝑖, 1 ≤ 𝑖 ≤ 2𝑚.  

Clearly {𝐻2, 𝐻4, … . , 𝐻2𝑚} form an ED of 𝐶𝑛 ∧ 𝐾2. 

Illustration 2.6 

As an illustration, let us decompose 𝐶6 ∧ 𝐾2.  

Let𝑉(𝐶6) = {𝑢1, 𝑢2, … 𝑢6}.Let 𝑉(𝐾2) = {𝑣1, 𝑣2} 

𝑪𝟔 ∧  𝑲𝟐:  

 

 

 

 

 

 

 

ED of 𝑪𝟔 ∧ 𝑲𝟐:  

 

 

 

 

 

 

 

 

 

 

 

(𝑢6 , 𝑣1) 
(𝑢6 , 𝑣2) 

 

(𝑢1, 𝑣1) (𝑢3 , 𝑣1) 

(𝑢2 , 𝑣2) 

𝑯𝟐 

(𝑢3 , 𝑣1) 

(𝑢4 , 𝑣2) 

(𝑢5 , 𝑣1) 

(𝑢6 , 𝑣2) 

(𝑢1, 𝑣1) 

𝑯𝟒 

 

(𝑢1, 𝑣1) (𝑢2 , 𝑣1) (𝑢3, 𝑣1) (𝑢4, 𝑣1) (𝑢5 , 𝑣1)(𝑢6, 𝑣1) 

(𝑢2 , 𝑣1)(𝑢2, 𝑣2)(𝑢2, 𝑣3)(𝑢2, 𝑣4)(𝑢2 , 𝑣5)(𝑢2, 𝑣6) 
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Theorem 2.7 

 For any integer n, 𝑊𝑛+1has an ED {𝐻2, 𝐻4, … . , 𝐻2𝑚} if and only if there exists an 

integer m satisfying the following properties:  

(i)  𝑚 = 2𝑘 𝑜𝑟 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ)  
(ii) 𝑚(𝑚 + 1) = 2𝑛 

Proof 

Let 𝐺 =  𝑊𝑛+1. Then, |𝐸(𝐺)| = 2𝑛. Assume  𝑊𝑛+1 has a ED {𝐻2, 𝐻4, … . , 𝐻2𝑚} 

Then 

 |𝐸(𝐻2)| + |𝐸(𝐻4)| + ⋯ |𝐸(𝐻2𝑚)| = |𝐸(𝐺)| 
⇒ 2 + 4 + ⋯ + 2𝑚 = 2𝑛 

   2(1 + 2 + ⋯ + 𝑚) = 2𝑛 

              2 (
𝑚(𝑚 + 1)

2
) = 2𝑛 

𝑚(𝑚 + 1) = 2𝑛 

       𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2) 

𝑚(𝑚 + 1) = 2𝑘, 𝑘 ≥ 1, 𝑘 ∈ ℤ 

𝑚 = 2𝑘 𝑜𝑟 𝑚 = 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ)  
Conversely,assume 𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2).  

Let 𝐺 =  𝑊𝑛+1. 

Let 𝑉( 𝑊𝑛+1) = {𝑢, 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} and |𝐸(𝐺)| = 2𝑛.  

Define 

𝑇1 = {(𝑢, 𝑢𝑖): 1 ≤ 𝑖 ≤ 𝑛}and 𝑇2 = {(𝑢𝑖, 𝑢𝑖+1): 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {(𝑢𝑛 , 𝑢1)}.  
Here |𝑇1| = 𝑛 and |𝑇2| = 𝑛 . Also, |𝑇1| + |𝑇2| = 2 + 4 + ⋯ + 2𝑚 = 𝑚(𝑚 + 1) .By lemma 2.3 

and lemma 2.4, {2,4,6, … .2𝑚} = 𝑆1 ∪ 𝑆2 where 

     

∑ 𝑥 = 𝑛 

𝑥∈𝑆1

𝑎𝑛𝑑 ∑ 𝑦 =

𝑦∈𝑆2

𝑛 

Decompose 𝑇1 and 𝑇2 into trees {𝐻𝑖 } as follows 

𝑇1 = ⋃ 𝐻𝑖

𝑖∈𝑆1

𝑎𝑛𝑑 𝑇2 = ⋃ 𝐻𝑖

𝑖∈𝑆2

 

Also,|𝐸(𝐻𝑖)| = 𝑖, 1 ≤ 𝑖 ≤ 2𝑚. Clearly {𝐻2, 𝐻4, … . , 𝐻2𝑚} form an ED of  𝑊𝑛+1. 
Illustration 2.8 

As an illustration, let us decompose 𝑊10+1.  

Let 𝑉( 𝑊10+1) = {𝑢1, 𝑢2, … 𝑢10, 𝑢}.  𝑊10+1 is given 

 

 

 

 

(𝑢1, 𝑣2) 

(𝑢2 , 𝑣1) 

(𝑢3 , 𝑣2) 

(𝑢4 , 𝑣1) 

(𝑢5 , 𝑣2) 

(𝑢6 , 𝑣1) 

𝑯𝟔 
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ED of  𝑾𝟏𝟎+𝟏  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.9 

 For any integer n, Globe 𝐺𝑛has an ED {𝐻2, 𝐻4, … . , 𝐻2𝑚} if and only if there exists 

an integer m satisfying the following properties:  

(i) 𝑚 = 2𝑘 𝑜𝑟 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ)  
(ii) 𝑚(𝑚 + 1) = 2𝑛 

Proof 

Let 𝐺 = 𝐺𝑛. Then, |𝐸(𝐺)| = 2𝑛. Assume 𝐺𝑛 has a ED{𝐻2, 𝐻4, … . , 𝐻2𝑚} 

Then 

 |𝐸(𝐻2)| + |𝐸(𝐻4)| + ⋯ |𝐸(𝐻2𝑚)| = |𝐸(𝐺)| 
⇒ 2 + 4 + ⋯ + 2𝑚 = 2𝑛 

𝑢10 𝑢2 

𝑢3 

𝑢4 

𝑢5 
𝑢6 

𝑢7 

𝑢1 

𝑢9 

𝑢8 

𝑢 

𝑾𝟏𝟎+𝟏 

u 

𝑢1 𝑢2 

𝑯𝟐 

𝑢 

𝑢6 

𝑢7 

𝑢10 

𝑢3 

𝑢8 

𝑢9 

𝑢4 

𝑢5 

𝑯𝟖 

𝑢3 𝑢2 𝑢1 𝑢4 𝑢5 

𝑯𝟒 

𝑢7 𝑢6 𝑢5 𝑢1 𝑢10 𝑢9 𝑢8 

𝑯𝟔 
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    2(1 + 2 + ⋯ + 𝑚) = 2𝑛 

           2 (
𝑚(𝑚 + 1)

2
) = 2𝑛 

 𝑚(𝑚 + 1) = 2𝑛 

      𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2) 

𝑚(𝑚 + 1) = 2𝑘, 𝑘 ≥ 1, 𝑘 ∈ ℤ  
𝑚 = 2𝑘 𝑜𝑟 𝑚 = 2𝑘 − 1 (𝑘 ≥ 1, 𝑘 ∈ ℤ)  

Conversely, assume 𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑2).  

Let 𝐺 = 𝐺𝑛 . Let 𝑉(𝐺𝑛) = {𝑢, 𝑣, 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} and |𝐸(𝐺)| = 2𝑛.  

Define 

𝑇1 = {(𝑢, 𝑢𝑖): 1 ≤ 𝑖 ≤ 𝑛}and 𝑇2 = {(𝑣, 𝑢𝑖): 1 ≤ 𝑖 ≤ 𝑛}.  

Here |𝑇1| = 𝑛  and |𝑇2| = 𝑛 . Also, |𝑇1| + |𝑇2| = 2 + 4 + ⋯ + 2𝑚 = 𝑚(𝑚 + 1) .By lemma 2.3 

and lemma 2.4, {2,4,6, … .2𝑚} = 𝑆1 ∪ 𝑆2 where 

     

∑ 𝑥 = 𝑛 

𝑥∈𝑆1

𝑎𝑛𝑑 ∑ 𝑦 =

𝑦∈𝑆2

𝑛 

 

Decompose 𝑇1 and 𝑇2 into trees {𝐻𝑖 } as follows 

𝑇1 = ⋃ 𝐻𝑖

𝑖∈𝑆1

𝑎𝑛𝑑 𝑇2 = ⋃ 𝐻𝑖

𝑖∈𝑆2

 

Also,|𝐸(𝐻𝑖)| = 𝑖, 1 ≤ 𝑖 ≤ 2𝑚. Clearly {𝐻2, 𝐻4, … . , 𝐻2𝑚} form an ED of 𝐺𝑛 . 
 

Illustration2.10 

As an illustration, let us decompose 𝐺10. Let 𝑉(𝐺10) = {𝑢, 𝑣, 𝑢1, 𝑢2, 𝑢3, … , 𝑢10}.  𝐺10. is 

given below.  

 

 

 

 

 

 

 

 

 

𝑢 

𝑣 

𝑢1 𝑢2 𝑢3 𝑢4 𝑢10 𝑢9 𝑢8 𝑢5 𝑢7 𝑢6 

𝑮𝟏𝟎 
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ED of  𝑮𝟏𝟎 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑢 

𝑢2 𝑢1 

𝑯𝟐 

𝑢 

𝑢6 

𝑢7 

𝑢10 

𝑢3 

𝑢8 

𝑢9 

𝑢4 

𝑢5 

𝑯𝟖 

 

𝑣 

𝑢1 

𝑢2 𝑢3 

𝑢4 

𝑯𝟒 

 

𝑣 
𝑢5 

𝑢6 
𝑢7 

𝑢8 

𝑢9 𝑢10 

𝑯𝟔 
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