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Abstract 

This study is aimed at identifying the best GARCH model for risk estimation of soybean price. 

Here GARCH model parameters are estimated using normal distribution, student-t distribution and 

Generalized error distribution (GED). For this study, the daily soybean price data of NCDEX from 

Indore market is taken up. The soybean price data for return series exhibits high kurtosis and 

volatility clustering. The characteristics of the data captured by all three error distributions improve 

the efficiency of the predictive model. The results demonstrate that volatility is highly persistent 

in the price data of the commodity. The result also suggested that the GARCH model with GED 

distribution satisfy the diagnostic phase and gives optimum accuracy measures for a future price 

estimation.  
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Introduction  

Commodity price movements have an impact on overall macroeconomic indicators of a country. 

The study on conditional volatility of agriculture market gives widespread anticipation towards 

the upcoming market environment linked to a selected commodity. Forecasting agriculture 

commodity price is essential for policymakers and stockholders as well as producers. Due to the 

existence of volatility in price behavior; risk and uncertainty occur in the market. A price 

forecasting system reduces the risk associated with price variability and help policymaker, 

economist and producer (farmer) to make their optimum decisions. Agriculture commodity prices 

are normally random or stochastic. This leads to substantial uncertainty and risk in the process of 

price forecasting and modeling.  In a market-oriented economy, the better volatility estimation 

system helps to monitor aspects that have an impact on price oscillation. Therefore, the volatility 

forecasting system act as a key input to market intelligence for macroeconomic policy planning.  

 In case economic variables, it is commonly observed kurtosis and lack of symmetry. 

Econometrician have developed GARCH family of models to capture the asymmetry in the series 

(Engle 1982, Bollerslev 1986). The aim of this paper is to select the best GARCH model using 

three error distribution viz. normal distribution, student-t distribution and GED distribution for 

daily closing price data of soybean. 
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Literature review 

Engle (1982) ARCH model and Bollerslev (1986) GARCH model describes time-varying 

volatility. These models lack in capturing the standard features of return series i.e time-varying 

skewness and kurtosis. Hensen (1994) established that the error distribution model can acquire the 

presence of both time-varying skewness and kurtosis. 

Galeano & Tsay (2009) describes that excess kurtosis and volatility clustering of return series is 

not effectively interned by GARCH models and suggests that change in parameter has significant 

effect on kurtosis and volatility level. Zhang, (2009) observes that if data does not follow normal 

distribution but skewness exist in the data, then the GARCH model with conditional error 

distribution gives improved volatility forecasting. Giller (2005) demonstrated probability 

distribution for univariate series. Wilhelmsson, (2006) analyzes intraday data having leptokurtic 

distribution by applying GARCH model and concludes that error distribution measure gives better 

volatility forecast. Koksal (2009) in their empirical study mention that fat tail in return series is 

well captured by T-GARCH then other error distributions models. Jondeau & Rockinger, (2003) 

designate T-GARCH model with varying movement and discover that occurrence of skewness is 

more frequent related to kurtosis.  Hamilton and Susmel, (1994) estimated the accuracy of the ex-

post volatility by mean square error and found no improvement in error estimation by using 

constant variance. Kelkey and Emmanuel (2014) modeled and analyzed the price volatility of 

agriculture commodity. The return series exhibits leptokurtic distribution, volatility clustering and 

asymmetric effect in the data. They concluded that the GARCH model with error distribution as 

the best-fitted model amongst ARCH family of models. 

Purpose of Research 

The study is based on the following objectives 

1. To estimate the volatility of soybean return  

2. To develop the appropriate GARCH model for forecasting soybean pricing in Indore 

market. 

Methodology 

Volatility Modeling 

For modeling the commodity price volatility, various ARCH family of models can be used (Tsay, 

2005). Whenever market volatility shows clustering behavior means high volatility period 

continues for some time before the market returns to its steady level. Then, generalized 

autoregressive conditional heteroskedastic (GARCH) approach is used to build more accurate and 

reliable volatility models. 
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The Generalized autoregressive conditional heteroskedasticity (GARCH) Model 

The autoregressive conditional heteroskedasticity (ARCH) model was proposed by Robert Engle 

(1982) for modeling and forecasting stochastic variance. ARCH model uses variance rather than 

standard deviation for forecasting. If in a linear time series ARMA model is selected for error 

variance, the exhibited model is called GARCH model. In 1986, T. Bollerslev developed 

parsimonious representations of conditional heteroskedasticity described by simultaneous mean 

and variance equations given as follows: 

Mean equation:   𝑟𝑡 = 𝜇 +  𝜀𝑡  , 𝜀𝑡= √ℎ𝑡 𝑧𝑡                   

Variance equation:  ℎ𝑡 =  𝜔̅ + ∑  𝛽𝑖  ℎ𝑡−𝑖
𝑝
𝑖=1 +  ∑ 𝛼𝐽𝜀𝑡−𝑗

2
𝑞

𝐽=1
   

Where p and q are order of GARCH and ARCH term respectively.  

The estimated parameter 𝛼 (ARCH effect) represents symmetric or magnitude of shocks or 

spillover effect and 𝛽 (GARCH effect) implies the persistent in conditional volatility regardless of 

other variables of the market, while 𝛼 + 𝛽  defines the die out rate of ARCH and GARCH effect. 

With GARCH (p, q) model, multi-period volatility forecast can be made (Alexander, 2009). To 

deal with the characteristics of the errors, the parameters of the models are measured by these 

distributions. 

Error Distribution 

Normal (Gaussian) distribution:  

The normal distribution has zero value of kurtosis and skewness. The density function for normal 

distribution is given as (Ghalanos, 2013) 

𝑓(𝜀) =
1

𝜎√2𝛱
ⅇ

(𝜀𝑡−μ)2

2𝜎2   

Where 𝜇 and 𝜎 are denoted as mean and standard deviation of the equation 

Student-t distribution: 

When return series exhibits flatter tail, it is rational to use student’s t distribution Bollerslev (1987) 

𝑓(𝜀) =
𝛤(𝑣 + 1/2)

𝛤 (
𝜈
2

) √𝜋(𝑣 − 2)𝜎𝑡
2

(1 +
𝜀𝑡

2

(𝜈 − 2)𝜎𝑡
2)

−
(𝑣+1)

2

 

The symbol 𝑣 express the degree of freedom and  𝛤 denotes the gamma function given as  

𝛤(𝜀) = ∫ 𝑡𝜀−1ⅇ𝑡 ⋅ ⅆ𝑡

∞

0

 

For → ∞ , student t distribution value tends to normal distribution. 

Generalized error distribution (GED) 

GED is a symmetrical distribution (Ghalanos, 2013) that transform the shape of normal density function 

by changing the value of 𝛽. The standard GED density function is given by 
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𝑓(𝜀) =
𝛽

2𝜎𝛤 (
1
𝛽

)
ⅇ𝑥𝑝 {− (

|𝜀 − 𝑢|

𝜎
)

𝛽

} 

For 𝛽=2, GED shape parameter reduces to normal distribution. 

Result and discussion 

The sample contains daily data of closing soybean prices obtained from NCEDX. To make 

forecast, the full sample is divided into two parts, in sample observations covering the period from 

1st 2006 to 31st December 2017 (including 3337 observations excluding public holidays) and out 

of sample forecast covering the period from 1st j January 2018 to 30th April 2018 (total 80 

observations). The time plot of soybean prices from 2nd January 2006 to 31st December 2017 are 

given in fig 1 

 

Fig 1: Graphical presentation of  daily soyben prices 

From the graph, we depict that soybean  prices  fluctuated  around  1161.150 to 4958 Rs./quintal 

and time series have random walk pattern. 

Stationarity test: 

A suitable model is fitted on stationary time series i.e. the observed series must have constant 

mean. For this the hypothesis that the data has unit root (non-stationarity) are checked by 

parametric (Augmented Dickey-Fuller) and non-parametric (Phillip- Perron) test statistics. The 

test indicates the existence of unit root in daily soybean price index as shown in table1.  

    Price index   Return series 

ADF test PP test   ADF test PP test   

t-statistics   -1.827114 -1.982164 -47.40791 -48.66054   

p-value    0.3676  0.2949  0.0001  0.0001  

Table 1: Results of unit root test 

To make price series stationary the series is tranform into log diffrencing denoted as return series 

.By doing this the series  became stationary in mean and variance.The return series is generated to 

stabilized the series (Fang Xu,2009). The log difference transformation is given as  

𝑟𝑡 = 𝑙𝑜𝑔 (
𝑝𝑡+1

𝑝𝑡
) *100 
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Again, the stationarity of return soybean price series data is checked. ADF and PP test statistics 

are used to determine the presence of unit root in the series (in table 1). The ADF test statistics for 

return series of soybean have considerable small t-statistics value i.e-47.40791, p-value is 

approximate zero specifies that the ADF t-statistics value is significant. Hence null hypothesis is 

rejected that the first difference for daily soybean price series has a unit root. The pp test for return 

series of soybean confirm the existence of stationarity. Thus, we make the same inference from 

parametric and non -parametric test.  

  

Mean    0.029639  Skewness  -3.762246 

Median   0.061888  Kurtosis  67.33389 

Maximum  4.852460  Jarque-Bera  583344.8 

Minimum  -24.17465  JB test p-value  0.0000 

Std. dev.  1.197755 

Table 2: Descriptive Statistics 

Descriptive statistics for log return series shows (in table 2) that the mean is close to zero with a 

negative skewness and Kurtosis greater value than 3 indicating price return are leptokurtic and fat-

tailed. The soybean price return indicates the low level of unconditional standard deviation. The 

Jarque -Bera statistics applied for the hypothesis that log return series exhibits normal distribution 

is rejected at 5% significance level. The index describes random variation and reflect volatility 

clustering is present.  

 Mean model specification 

Once the return series become stationary, conditional mean model is specified by different AR and 

MA combination to choose the best ARMA structure. The appropriate model selection is based on 

the values of Akaike information criteria (AIC) and Schwarz information criteria (SIC). Among 

various selected models ARMA (1,2) is found as better fitted model in the soybean return series. 

After estimate ARMA model for conditional mean, the residuals of the ARMA model is tested for 

serially correlation or the presence of ARCH effect. ARCH family of models are applied when 

ARCH effect is present in the residual diagnostic. The presence of remaining ARCH effect in 

variance is tested by Lagrange Multiplier (LM) test (Engle,1982).  

 ARCH-LM test 

 

 

               

  Table 3: ARCH-LM test on ARMA (1,2) residuals 
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 In table 3, ARCH test for heteroskedasticity 𝑜𝑏𝑠∗ 𝑅2 and corresponding p value. Since p < 0.05, 

it shows that the test statistics is highly significant. So, rejecting null hypothesis of no ARCH effect 

at 1% significance level, confirms the existence of ARCH effect. 

 Soybean price return series has analyzed for optimum value of lag specification of GARCH 

models. For modelling conditional heteroskedasticity, the estimated errors in ARMA is modeled 

by using GARCH specification. 

Volatility model specification 

GARCH model describes the coefficient of conditional mean and variance equation 

simultaneously. The suitable model selection is based on AIC and SIC criteria. The parameter of 

the GARCH models are estimated by maximum likelihood estimator using BFGS/ Marquardt 

algorithm (Ghalanos,2013).  The conditional volatility model optimization is done by Comparing 

different error distribution GARCH models as given in table 4. 

 

Model Error distribution AIC value SIC value 

GARCH (1,1) model Normal 2.844887 2.857713 

Student-t 2.685597 2.700255 

GED 2.716212 2.730870 

GARCH (1,2) model Normal 2.844995 2.859653 

Student-t 2.686627 2.703118 

GED 2.716784 2.733275 

GARCH (2,1) model Normal 2.845467 2.860125 

Student-t 2.686448 2.702938 

GED 2.716779 2.733269 

GARCH (2,2) model Normal 2.844938 2.861429 

Student-t 2.681143 2.699466 

GED 2.713308 2.731631 

Table 4: Parameter estimation of ARMA (1,2)-GARCH models for different error distributions 

From the estimated models, the best fitted models are N-GARCH (1,1), T-GARCH (2,2) and GED-

GARCH (2,2). Further, Investigation of the adequacy of GARCH model by accuracy measures 

criteria RMSE, MAE and Theil U-statistics, is given below in table 5 
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Selected model  Error distribution Accuracy measures indicators 

RMSE MAE Theil U-statistics 

GARCH (1,1) 

model 

 Normal 

Distribution 

1.179383 0.767744 0.774899 

GARCH (2,2) 

model 

t- distribution 1.173991 0.760466 0.804167 

GARCH (2,2) 

model  

GED distribution  1.173635 0.759197 0.820268 

Table 5. Performance of different error distribution GARCH models 

Accuracy measures shows that GARCH (2,2,) model with GED distribution has lowest values in 

most of the statistical measures. Thus, for estimation of volatility in return series GED-GARCH 

(2,2,) is the best fitted model.  

 

Forecasting volatility model 

 

 

Table 6: Result of ARMA (1,2) - GARCH (2,2) model with GED distribution 

Analyzing result of ARMA (1,2)-GARCH (2,2) models (in table 6) clearly demonstrate that 

parameters for GARCH model are statistically significant. The constant of the GARCH model (𝜔) 

and coefficient viz. ARCH term (𝛼1 𝑎𝑛ⅆ 𝛼2 ) and GARCH term (𝛽1 𝑎𝑛ⅆ  𝛽2) are found to be 

highly significant. The estimated coefficients in the conditional variance equation describe the 

𝛽1 +   𝛽2 > 𝛼1 + 𝛼2 indicating the presence of volatility in the market and current volatility is 
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sensitive to its lagged value. Here,  𝛼 𝑎𝑛ⅆ  𝛽 coefficients determine the volatility and the sum of 

the coefficients of  𝛼  and 𝛽 is close to unity represents that the shocks will continue for many 

future periods.  

Conclusions: 

The study observed the GARCH model under the three-error distribution (normal, student t, GED) 

to capture the common features (volatility) of commodity market. The daily return series exhibit 

negative skewness, high kurtosis, volatility clustering and ARCH effect. GARCH model is suitable 

to capture these standard features of commodity market. For best model selection comparative 

analysis done on the basis of AIC, SIC, MAE, RMSE and Theil inequality coefficients and find 

that for GED-GARCH (2,2) model all statistical measures have low value. The estimated 

parameter of GARCH (2,2) model lies within the normal ranges. The reaction parameter 𝛼1 is 

about 0.19 shows that the market is jumpy or nervous and the persistent parameter 𝛽1 is 1.74. For, 

GARCH model, the value of the coefficients (𝛼 + 𝛽) is close to unity. which demonstrates that 

volatility shocks are highly persistent. The results of the study show that volatility shocks are 

persistent in soybean prices. 
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