A Study on Restrained Triple Connected Two Domination Number of a Graph

Dr. A.Punitha Tharani¹, A.Robina Tony²

¹Associate Professor, ²Research Scholar

^{1,2}Department of Mathematics, St.Mary's College (Autonomous)

Thoothukudi, Tamil Nadu, India,

Abstract: The concept of triple connected graphs with real life application was introduced by considering the existence of a path containing any three vertices of a graph G.G. Mahadevan etc. al., introduced the concept of triple connected domination number of a graph. In this paper, we introduce a new domination parameter, called restrained triple connected two domination number of a graph. A subset S of V of a non – trivial graph G is said to be a restrained triple connected two dominating set, if S is a restrained two dominating set and the induced subgraph $\langle S \rangle$ is triple connected. The minimum cardinality taken over all restrained triple connected two dominating sets is called the restrained triple connected two domination number of G and is denoted by $\gamma_{2rtc}(G)$. Any restrained triple connected two dominating set with γ_{2rtc} vertices is called a γ^{2rtc} - set of G. We determine this number for some standard and special graphs and obtain bounds for general graph. Its relationship with other graph theoretical parameters is also investigated.

Keywords: Triple connected graphs, restrained triple connected, restrained triple connected two domination

Subject Classification: 05C69

I. INTRODUCTION

All graphs considered here are finite, undirected without loops and multiple edges. Unless and otherwise stated, the graph G = (V, E) considered here have p = |V| vertices and q = |E| edges.

A subset S of V of a nontrivial graph G is called a *dominating set* of G if every vertex in V-S is adjacent to at least one vertex in S. The *domination number* $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets in G. A subset S of V of a nontrivial graph G is called a *restrained dominating set* of G if every vertex in V-S is adjacent to at least one vertex in S as well as another vertex in S and S of S is said to be two dominating set if every vertex in S is adjacent to at least two vertices in S. The minimum cardinality taken over all two dominating sets is called the two domination number and is denoted by $\gamma_{S}(G)$. A subset S of S is adjacent to at least two vertices in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to a vertex in S and every vertex of S is adjacent to at least two vertices in S and every vertex of S is adjacent to at least two vertices in S and every vertex in S is adjacent to at least two vertices in S and every vertex in S is adjacent to at least two vertices in S and every vertex in S is adja

A subset S of V of a nontrivial graph G is said to be triple connected dominating set, if S is a dominating set and the induced sub graph < S > is triple connected. The minimum cardinality taken over all triple connected dominating sets is called the triple connected domination number and is denoted by γ_{tc} . A subset S of V of a nontrivial graph G is said to be *restrained triple connected dominating set*, if S is a restrained dominating set and the induced sub graph < S > is triple connected. The minimum cardinality taken over all restrained triple connected dominating sets is called the *restrained triple connected domination number* and is denoted by γ_{nc} . A subset S of V of a non – trivial graph G is said to be a restrained triple connected two dominating set, if S is a restrained two dominating set and the induced subgraph < S > is triple connected. The minimum cardinality taken over all restrained triple connected two dominating sets is called the restrained triple connected two domination number of G and is denoted by $\gamma_{2rtc}(G)$. Any restrained triple connected two dominating set with γ_{2rtc} vertices is called a γ_{2rtc} - set of G.

Theorem 1.1: A tree is triple connected iff $T \cong P_p$, $p \ge 3$.

Theorem 1.2: If the induced subgraph of each connected dominating set of G has more than two pendant vertices, then G does not contain a triple connected dominating set.

Theorem 1.3: For any graph G, $\left\lceil \frac{p}{\Delta + 1} \right\rceil \leq \gamma$ (G)

II. RESTRAINED TRIPLE CONNECTED TWO DOMINATION NUMBER

Definition 2.1: A subset S of V of a non – trivial graph G is said to be a restrained triple connected two dominating set, if S is a restrained two dominating set and the induced subgraph $\langle S \rangle$ is triple connected. The minimum cardinality taken over all restrained triple connected two dominating sets is called the restrained triple connected two domination number of G and is denoted by $\gamma_{2\text{rtc}}(G)$. Any restrained triple connected two dominating set with $\gamma_{2\text{rtc}}$ vertices is called a $\gamma_{2\text{rtc}}$ - set of G.

Example 2.2: For the graph G_1 in Figure 2.1, $S = \{v_3, v_4, v_6, v_7\}$ forms a γ_{2rtc} - set. Hence $\gamma_{2rtc}(G) = 4$.

Figure 2.1

Observation 2.3: γ_{2rtc} - set does not exists for all graphs if exists $\gamma_{2rtc}(G) \ge 3$.

Observation 2.4: Every $\gamma_{2\pi c}$ - set is a dominating set but not conversely.

Example 2.5: For the graph G_2 , in Figure 2.2 $S = \{v_1\}$ is a dominating set but not a γ_{2rtc} - set.

Figure 2.2

Observation 2.6: Every γ_{2nt} - set is a connected dominating set but not conversely.

Example 2.7: For the graph G_2 , in Figure 2.2 $S = \{v_1, v_2\}$ is a connected dominating set but not a γ_{2rtc} - set.

Observation 2.8: Every γ_{2rtc} - set is a triple connected dominating set but not conversely

Example 2.9: For the graph G_2 , in Figure 2.2 $S = \{v_1, v_5, v_6\}$ is a triple connected dominating set but not a γ_{2rtc^-} set.

Observation 2.10: Every $\gamma_{2\pi c^-}$ set is a restrained triple connected dominating set but not conversely.

Example 2.11: For the graph G_2 , in Figure 2.2 $S = \{v_1, v_5, v_6\}$ is a triple connected dominating set but not a γ_{2rtc} - set.

Observation 2.12: The complement of the γ_{2rtc} - set need not be a γ_{2rtc} - set.

Example 2.13: For the graph G_2 , in Figure 2.2 $S = \{v_1, v_2, v_5, v_6\}$ is a triple connected dominating set but the complement V-S = $\{v_3, v_4\}$ is not a γ_{2rtc} - set.

Theorem 2.14: For any connected graph G, $\gamma_c(G) \le \gamma_{tc}(G) \le \gamma_{2rtc}(G)$.

2.15 Exact value for some standard graphs:

- i. For any path of order $p \ge 3$, $\gamma_{2rtc}(P_p) = p$
- ii. For any cycle of order $p \ge 3$, $\gamma_{2rtc}(C_p) = p$
- iii. For the complete graph of order $p \ge 3$, $\gamma_{2rtc}(K_p) = \begin{cases} p, p = 3,4\\ 3, p \ge 5 \end{cases}$
- iv. For the complete bipartite graph $K_{m,n}$,

$$\gamma_{2\pi c}\left(K_{m,n}\right) = \left\{ \begin{array}{ll} m+n, \ m \ or \ n=2 \\ m \ or \ n \geq 2 \\ 4, \ m \ or \ n \geq 3 \ and \\ m \ or \ n \geq 3 \end{array} \right.$$

Theorem 2.16: If the induced subgraph of each connected dominating set of G has more than two pendant vertices, then G does not contain a restrained triple connected two dominating set.

The proof follows from Theorem 1.2

Theorem 2.17: For any connected graph G with $p \ge 3$ we have $3 \le \gamma_{2\pi c} \le p$ and the bounds are sharp.

Proof: The lower bound follows from the definition of restrained triple connected two dominating set and the upper bound is obvious. For K_p the equality of the lower bound is attained and for C_p and P_p the equality of the upper bound is attained.

Theorem 2.18: For any connected graph G with five vertices $\gamma_{2rtc}(G) = p - 2$ iff G is isomorphic to any of the following graphs, K_5 , $K_4(1)$, $K_4(2)$, $K_4(3)$, $C_4(3)$, $C_4(4)$, $K_4 - e(3)$.

Proof: If G is isomorphic to K_5 , K_4 (1), K_4 (2), K_4 (3), C_4 (3), C_4 (4) and $K_4 - e$ (3) then it can be verified that $\gamma_{2rtc}(G) = p - 2$. Conversely let G be a connected graph with five vertices and $\gamma_{2rtc}(G) = 3$. Let $S = \{v_1, v_2, v_3\}$ be the γ_{2rtc} – set of G. Take $V - S = \{v_4, v_5\}$ and hence $\langle V - S \rangle = K_2$. Also $\langle S \rangle = P_3$ or C_3 .

Case (i)
$$<$$
S $> = P_3$ and $<$ V $-$ S $> = K_2$

Let v_1 , v_2 , v_3 be the vertices of P_3 and v_4 , v_5 be the vertices of K_2 . Since G is connected v_1 (or equivalently v_3) is adjacent to v_4 (or) v_2 is adjacent to v_4 (or equivalently v_5). If v_1 is adjacent to v_4 and v_4 and v_5 is adjacent to v_4 and v_5 in the degrees of v_5 . If v_5 is adjacent to v_5 is adjacent to v_6 and v_7 or v_8 and v_8 or v_8 is adjacent to v_8 adjacent to v_8 and we observe that v_8 is isomorphic to v_8 and we observe that v_8 is adjacent to v_8 , v_9 and v_9 . We can find new graphs by increasing the degrees of v_8 and we observe that v_8 is adjacent to v_8 , v_9 and v_9 . Suppose v_9 is adjacent to v_9 and v_9 increasing the degrees of v_9 and we observe that v_9 is adjacent to v_9 and v_9 . Suppose v_9 is adjacent to v_9 then we can find new graphs by increasing the degrees of v_9 . We observe that v_9 is isomorphic to v_9 is adjacent to v_9 then we can find new graphs by increasing the degrees of v_9 . We observe that v_9 is isomorphic to v_9 is adjacent to v_9 then we can find new graphs by increasing the degrees of v_9 . We observe that v_9 is isomorphic to v_9 is adjacent to v_9 is adjacent to v_9 increasing the degrees of v_9 . We observe that v_9 is isomorphic to v_9 is adjacent to v_9 increasing the degrees of v_9 .

Case (ii)
$$<$$
S $> = C_3$ and $<$ V $-$ S $> = K_2$.

Let v_1 , v_2 , v_3 be the vertices of C_3 and v_4 , v_5 be the vertices of K_2 . Since G is connected v_4 or v_5 is adjacent to C_3 . If $d(v_4) = 3$, then v_4 is adjacent to $(v_1$ and $v_2)$ or $(v_1$ and $v_3)$ or $(v_2$ and $v_3)$. If v_4 is adjacent to v_1 and v_2 then we can find new graphs by increasing the degrees of v_5 . We observe that G is isomorphic to K_4 (2), C_4 (4) or $K_4 - e$ (3) and K_4 (3), $K_4 - e$ (3), K_4 (2) and K_4 (3). If $d(v_4) = 4$, then v_4 is adjacent to v_1 , v_2 and v_3 . By increasing the degree of v_5 G is isomorphic to K_4 (3) and K_5 .

Theorem 2.19: Let G be a graph such that G and \bar{G} have no isolates of order $p \ge 3$. Then

- i. $\gamma_{2rtc}(G) + \gamma_{2rtc}(\bar{G}) \le 2p$
- ii. $\gamma_{2rtc}(G) \cdot \gamma_{2rtc}(\bar{G}) \le p^2$ and the bound is sharp

Proof: The bound directly follows from Theorem 2.17. For cycle C_p and path P_p equality of both the bounds are attained.

Relation with other graph parameters:

Theorem 2.20: For any connected graph G, $\gamma_{2rtc}(G) + \chi(G) \le 2p$ and the inequality holds if and only if G is isomorphic to K_3 or K_4 or C_3 .

Proof: It is clear that, $\gamma_{2rtc}(G) \le p$ and $\chi(G) \le p$. Thus, $\gamma_{2rtc}(G) + \chi(G) \le p + p = 2p$. Suppose G is isomorphic to K_3 or K_4 . Then clearly $\gamma_{2rtc}(G) + \chi(G) = 2p$. Conversely, let $\gamma_{2rtc}(G) + \chi(G) = 2p$, the only possible case is $\gamma_{2rtc}(G) = p$ and $\chi(G) = p$. If $\chi(G) = p$ then G is isomorphic to K_p . In K_p , $\gamma_{2rtc}(G) = 3$, $p \neq 4$ and $\gamma_{2rtc}(K_4) = 4$, so that G is isomorphic to K_3 or K_4 . Also if G is isomorphic to C_3 , then $\gamma_{2rtc}(G) = p$ and $\chi(G) = p$ is possible.

Theorem 2.21: For any connected graph G $\gamma_{2\pi c}(G) + \kappa(G) \le 2p - 1$ and the equality holds if and only if G is isomorphic to K_3 or

Proof: It is clear that $\gamma_{2rtc}(G) \le p$ and $\kappa(G) \le p-1$. Thus, $\gamma_{2rtc}(G) + \kappa(G) \le p+p-1 = 2p-1$. Suppose G is isomorphic to K₃ or K₄. Then clearly $\gamma_{2rtc}(G) + \kappa(G) = 2p - 1$. Conversely, let $\gamma_{2rtc}(G) + \kappa(G) = 2p - 1$, then the only possible case is $\gamma_{2rtc}(G) = p$ and $\kappa(G) = p$ p-1. Since $\kappa(G)=p-1$, G is a complete graph. In K_p , $\gamma_{2rtc}(G)=3$, $p\neq 4$ and $\gamma_{2rtc}(K_4)=4$. Hence G is isomorphic to K_3 or K_4 .

Theorem 2.22: For any connected graph G with $p \ge 3$ vertices, $\gamma_{2rtc}(G) + \Delta(G) \le 2p - 1$ and the bound is sharp. **Proof:** Let G be a connected graph with $p \ge 3$ vertices. We know that, $\Delta(G) \le p - 1$ and by Theorem 2.17 $\gamma_{2\pi c}(G) \le p$. Hence $\gamma_{2rtc}(G) + \Delta(G) \leq 2p - 1$. For K_3 and K_4 the bound is sharp.

REFERENCES

- [1] John Adrian Bondy, Murty U.S.R. (2009): Graph Theory, Springer, 2008.
- [2] J. Jagan Mohana, Indrani Kelkarb, Restrained 2-Domination Number of Complete Grid Graphs, International Journal Journal, ISSN: 0974 - 4665 (Print) 0974 - 4673 (Online) Volume of Applied Mathematics and Computation 4(4) 2012 352-358.
- [3] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- [4] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).
- [5] V.R.Kulli and S.C.Sigarakanti, The connected edge domination number of a graph, Technical Report 8801, Dept Math. Gulbarga University, (1988).
- [6] G. Mahadevan, A. Selvam, J. Paulraj Joseph and, T. Subramanian, Triple connected domination number of a graph, International Journal of Mathematical Combinatorics, Vol.3 (2012), 93 - 104.
- [7] G. Mahadevan, A. Selvam, V. G. Bhagavathi Ammal and, T. Subramanian, Restrained triple connected domination number of a graph, International Journal of Engineering Research and Application, Vol. 2, Issue 6 (2012), 225-229.
- [8] S. L. Mitchell and S. T. Hedetniemi, Edge domination in trees. Congr. Numer.19 (1997) 489-509.
- [9] Paulraj Joseph J., Angel Jebitha M.K., Chithra Devi P. and Sudhana G. (2012): Triple Indian graphs, Journal of Mathematics and Mathematical Sciences, ISSN 0973-3329 Vol. 8, No. 1: 61-75.
- [10] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater (1998): Fundamentals of domination in graphs, Marcel Dekker, New York.