
© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 386

SECURITY THREATS AND

COUNTERMEASURES IN SOFTWARE

DEFINED NETWORKING
1Karthik Srinivasan, 2Saravanan Matheswaran, 3Prabaharan Sengodan

1Department of Information Technology, 2,3Department of Computer Science and Engineering
1College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia

2Aurora’s Technological and Research Institute, Hyderabad, India
3Jyothishmathi Institute of Technology & Science, Karimnagar, India

Abstract: In recent years, Software-Defined Networking (SDN) has been a focus of research. SDN offers numerous benefits

including on-demand provisioning, automated load balancing, streamlined physical infrastructure and the ability to scale

network resources as per the need. SDN can manage network traffic through software and the administrator gain a much

higher degree of control, which provides the ability to change network rules on the fly. In the near future, SDN can replace

traditional networking. At the same time, careful attention needs to be paid to security at this early design stage. This paper

mainly focuses on the security aspects of SDN. We begin by discussing the architecture of SDN. According to the design

architecture, we discuss the possible security defects in SDN. Finally discuss various threats and its countermeasures based

on three-layer architecture, i.e. data forwarding layer, control layer, and application layer. In addition to that various

defensive mechanisms are highlighted.

Keywords- Software Defined Networking, SDN, Security, Countermeasures

I. INTRODUCTION

In the traditional networking approach, most of the networking functionalities are implemented in a dedicated appliance

and hardware i.e, the switches, routers, etc. Operating and maintaining today's network is an arduous task because of the

many complexities and the various policies implemented on it. Today's network is a heterogeneous collection of switches,

routers, and systems which uses vendor specific and low-level commands. Implementing new global policies or changing a

small set of the device need each device to configure separately which makes the complex and time-consuming task.

As a relatively recent proposal, Software-defined Networking (SDN) has the potential to reduce many of these

traditional network problems because of its support to dynamic nature of network, centralized control plane and direct

programmability [1] [2]. SDN is an approach to networking that separates the control plane from the forwarding plane to

support virtualization. SDN is a new paradigm for network virtualization. Adopting an SDN methodology has a myriad of

benefits including flexibility, scalability, redundancy, and performance. Currently, OpenFlow [3] is the de facto standard of

SDN. The widespread acceptance of OpenFlow by academia and industry makes this SDN standard very successful [4].

While SDN is promoting many new network applications, security has become a significant concern. SDN and a diverse

set of SDN-based security applications will rapidly gain traction in the fight against cybercrime. SDN can make it easier to

collect network usage information, which could support improved algorithm design used to detect attacks. The new

generation of applications will take advantage of better-informed SDN agents to improve policy enforcement and traffic

anomaly detection and mitigation. These applications may be able to block malicious intruders before they enter the critical

regions of the network. If the security of SDN cannot be ensured, their development will encounter much resistance during

the process of replacing traditional network architecture, and even become altogether irrelevant. The main aim of this paper

is to discuss the architecture of SDN, Security defects of SDN and threats with its countermeasures to SDN.

The rest of the paper is organized as follows. To facilitate discussions on SDN security, Section II briefly introduces the

architecture of SDN. Section III discusses about security defects of SDN. Section IV focuses on SDN security threats and

countermeasures. Section V concludes this paper.

II. SDN ARCHITECTURE

The inflexibility of the traditional network is due to the tight coupling of control plane and data plane. These

inflexibilities of traditional network hide the adoption of changing network infrastructure needs. The SDN architecture

distributes the tightly coupled control and forwarding logic into different layers. Open Network Foundation has given three-

layered reference architecture for the SDN networks [5]. The decoupling of data forwarding and control logic enables

network control and applications to be programmable [6]. Generally, SDN architecture can be divided into three layers,

respectively called the data forwarding layer, the control layer and the application layer from bottom to up, as illustrated in

Figure.1.

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 387

Fig.1 The Architecture of SDN

The Data forwarding layer comprises the network elements, which are merely forwarding devices. This layer consists of

many SDN switches, which are physically connected by wired or wireless media. They are exposed to the control layer

through the South-bound communication interface.

The Control layer lies in the middle of the architecture and is responsible for translating the requirement of the

application thus putting more granular control over the network elements while providing relevant information up to the SDN

applications. As the SDN’s brain, the control layer manages and controls the entire network. This layer logically centralized

to manage all the connected OpenFlow elements in executing out he policies defined on them.

The Application layer has all the SDN applications residing over it. This layer communicates the SDN applications

through the north-bound communication interface. The application layer allows network operators to respond rapidly to

various business requirements. Innovative application software has been built to function on top of SDN controllers so that

various application requirements are met [7], such as network virtualization [8], topology discovery [9], traffic monitoring

[10], security enhancement [11], load balancing [12], and others.The application layer communicates with the control layer

through north-bound APIs, such as the REST API. The control layer provides an abstraction of the network’s physical

resources for the application layer, which means that network operators can change the data paths of packets using only

software programming centrally on the SDN controllers, and not configure all the physical switches in the data path one by

one.

III. SDN SECURITY DEFECT ANALYSIS

Compared to traditional network architectures, security threats of SDN will be even more concentrated, as opposed to

the dispersion seen in the network elements of traditional networks. Therefore, because of its design nature, SDN has security

advantages and security defects. Its advantages include adequate monitoring of abnormal traffic and time dealing with

vulnerabilities. So the SDN can effectively notice the abnormal behavior in network traffic created by an attacker and

identification of vulnerability exploited by threat in real time.

On the other hand, the natural security defects of SDN include

 Vulnerable controller,

 Risks of open programmable interfaces

 More attack points

Vulnerable Controller:

The SDN controller is typically the primary target for attackers because it is the central point for decisions in a network

and a central point of failure. Attackers can try to get control of the network by breaking into a controller or pretending to be

one. Once a central controller is compromised, an attacker can gain complete control over your network. This would be

considered an extreme scenario, but it could be possible as SDN usage continues to grow.

Risks of open programmable interfaces:

Due to their open nature, SDN is more susceptible to security threats. First, it makes the software vulnerabilities of the

SDN controller fully exposed to attackers, as the latter will have enough information to formulate an attack strategy. Thus,

the open interfaces of SDN controllers need to be carefully evaluated and scrutinized.

More attack points:

As the SDN is divided into three layers, the entities of each layer may be spread across different locations of the network

[13]. The more possible attack points of SDN for attackers as shown in Fig.2.

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 388

Fig.2 Possible Attack Points in the SDN Architecture

The SDN switch: A SDN switch is generally a separate device composed of related hardware and software, which vulnerable

to attacks. An example of vulnerability is the size limitation of Flow Tables.

The links between SDN switches: Almost data packets transmitted between SDN switches are not encrypted, and may

contain users’ sensitive information. These packets can be intercepted by attackers easily, especially when the links between

switches are wireless media.

The SDN Controller: As stated previously, the controller is the most attractive target for attackers. Due to the openness of

programmability and the complexity of its functionality, the controller's software is inevitably vulnerable, and this can be

exploited for malicious attacks.

The links between the controller and the switches: All forwarding rules are inserted into switches by the controller. The data

packets that contain these rules can be tampered with by attacker through eavesdropping on the link between the controller

and switch, which will result in a spurious rule insertion or malicious rule modification. Once fraudulent rules are installed in

the switch, the data packets will not be forwarded correctly.

The links between controllers: In a multi-controller environment, the communication between different controllers is

necessary for retaining the consistent state of the whole network. The data packets in the links between controllers can be

intercepted, which could provide possible clues to attackers for compromising the controllers.

The application software: The application software is built on the controller directly and is generally located on the same

physical device with a controller. When the application software invokes the functions of the controllers through the north-

bound APIs, malicious code may be embedded into the controller. Hence, the application software is considered the most

convenient attack point for seizing the controllers.

With the advancement of research into SDN, the security issues of SDN attract more and more attention from

manufacturers and operators. In this section, we will describe in detail the main security threats and countermeasures that

have been presented. According to the above-presented SDN architecture and related security analysis, we divide the threats

and corresponding countermeasures into three categories based on which layer of the SDN architecture contains the

corresponding attack target, i.e., the forwarding layer, the control layer, and the application layer.

IV. SDN SECURITY THREATS AND COUNTERMEASURES

In the recent development of SDN, the security issues of SDN gets much more attention from users and manufacturers. In

this section, we will discuss the main security threats and countermeasures that have been presented. According to the SDN

architecture, threats and its corresponding countermeasures are divided into three categories based on which layer of the SDN

architecture contains the corresponding attack target.

A. Threats to the data forwarding layer and countermeasures

The data forwarding layer is placed at the bottom of the SDN architecture and consists of hundreds of switches that are

interlinked together. The primary purpose of these switches is to forwarding the packets. The packets will not be forwarded

to the next hop if the switch is compromised. Also, a switch is the direct entry device to access the network for the end user.

Thus, it is vital to recognize the security threats and find several countermeasures for SDN switches.

Typically, an OpenFlow switch consists of three modules called the OpenFlow client, the Flow Table and the Flow

Buffer. When the switch receives a packet from an input port, it will keep the packet in the Flow Buffer and find the

corresponding rule for this packet from the Flow Table. If the rule is found, then the packet is forwarded to the respective

output port. Otherwise, if the rule is not found, then the request will be sent to the controller through OpenFlow client for a

new rule. According to this process, we found the following main security threats; Man-in-the-middle attack (MITM)

between the switch and the controller and DoS attack to overflow the Flow Table and the Flow Buffer.

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 389

1) Man-in-the-middle attack between the switch and the controller

Threat Description

A MITM attack is a standard network attack that primary purpose is to insert an agent device between two nodes and

used to intercept the data communication and tamper with them without knowing either communication parties. Specific

attack types of MITM include DNS spoofing, session hijacking, port mirroring and so on. A MITM attack between the

switch and the controller is an excellent choice for attacking SDN so that it can be used to intercept and tamper the

forwarding rules issued to the switch to obtain control of packet forwarding.

Countermeasures

To protect SDN against a MITM attack, much of the research work proposed both in academia and industry. The most

obvious method is to establish a secure channel the switch and the controller. Transport Layer Security [14] was used in

OpenFlow specification v1.0, to protect switch-controller communication. However, many vendors do not provide support to

TLS because of its complex configuration. So later versions of OpenFlow specifications specify that TLS configuration is

optional. FLowCheker [15] is an alternative countermeasure have been proposed to a MITM attack. FLowChecker is a

configuration validation tool which can rapidly recognize the internal configuration of interconnected switches and perform

analysis of all connected switches. By doing this analysis, any misconfiguration can be detected. FortNOX [16] is another

alternative method which supports a role-based authorization and authentication security enhancement strategy. By using this

FortNOX algorithm, it can detect the collision of various forwarding rules. VeriFLow [17] acts a middle layer between the

switch and the controller for the dynamic verification of new variables within the network.

2) DoS attack to overflow the Flow Table and Flow Buffer

Threat Description

The reactive flow rule of SDN switch leads to vulnerable due to a DoS attack. When the packets arrived with an

unknown destination address, the new rule will be inserted to the switch. By taking this as an advantage, an attacker can

generate vast amounts of packets destined to unknown network host in a short time. So, within short duration time, the flow

table will get overflow. Thus, the legitimate packet will not get a new rule to reach the destination. Except for the overflow

of flow table, another target of DoS attack is the flow buffer.

When a new packet arrived at the switch, they are buffered until results of the rule to forward or new to be come. Packets

in the buffer are marked as First In First Out (FIFO) basis. The flow buffer is limited in size. Attackers can flood massive

number of packets belongs to a different flow. The switch has to buffer all these packets, and soon it becomes full. Due to the

overflow of the flow buffer, legitimate packets will not get enough space in the flow buffer, and new packets need to be

dropped.

Countermeasures

To alleviate the DoS attack on Flow table, FlowVisor [18] was proposed, and it can enable network operators to

differentiate network packets based on the header fields of packets. FlowVisor can behave like an agent between the switches

and the controller. It accepts rule from the controller and rewrites them. Thus, the resulting rules only affect the portion of the

network given to the controller is allowed to control.

Moreover, another proposal called Virtual source Address Validation Edge (VAVE) [19] is proposed. It is a preemptive

protection scheme with OpenFlow/NOX architecture aiming to mitigate DoS attacks caused through IP spoofing. A new

packet that does not match any rule in the Flow Table will be sent to the controller for source address validation, during

which IP spoofing may be detected, in which case the controller creates a rule in the FlowTable to stop the specific flow from

that source address.

B. Threats to the control layer and countermeasures

The controllers are the brain of the SDN. As per the SDN architecture, the security of the control layer has a direct

impact on the data forwarding layer [20]. If a controller is compromised, then the whole network including a potentially huge

number of switches will be affected. Because the switch can not receive any forwarding rules from the compromised

controller. So the switch does not know where to forward packets. Due to the importance of the control layer, it becomes a

key target to the attackers. Distributed DoS (DDoS) attacks and the threat from an application are the primary sources of

attack on the control layer.

1) DDoS attacks on the controller

Threat Description

The DDoS attacks attempt to make a considerable number of traffic to the controller which makes the controller

unavailable to legitimate users by exhausting the computing and memory resources. An attacker can produce a massive

amount of flooding traffic in a short time to an SDN network by compromising a large number of systems called zombies.

This enormous traffic mixed with the legitimate packets and it is to difficult to distinguish between the two types. In the case

of the DDoS attack, the traffic between switch and controller is entirely occupied that will affect the performance of the

whole network.

Countermeasures

To alleviate the DDoS attack on controllers, FloodGuard [21] is proposed. It is a light-weight security framework and

protocol independent. It contains two modules, the Active Flow Analyser, and Packet Migration. The Active Flow Analyzer

performs a dynamic flow analysis based on the real-time traffic of the controller. So that it can detect the bogus traffic

generated by DDoS attack. Packet Migration is responsible for buffering the received packets and submitting them to the

controller for processing at a limited rate through a rotation scheduling algorithm, which prevents the controller from

consuming too much computing resources.

Also, to alleviating the DDoS attack on controllers, DDoS Blocking Application (DBA) [22] was proposed. The DBA

runs on the controller and detects the attack traffic from the regular traffic by the use of Locator/ID Separation propotol

(LISP) [23]. When the position of a network node changes, the DBA will notify the corresponding change to the controller

by the locator, which is the clue to discovering the attack.

2) Threats from applications

Threat Description

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 390

Higher layer applications can obtain network information by invoking the application given by the controller.

Applications running on the controller will get serious security threats to the controller. Different applications have different

functional requirements which results need to customize a different security policy for each of them.

Countermeasures

In order to deal with the security theats from higherlevel applications, Security-enhanced Floodlight controller

(SEFloodlight) [24] is proposed. SEFLoodlight provides a programmable north-bound API to manage the permissions of

applications, which acts as a mediator between application and controller. In addition with application authorization module,

the SEFloodlight provides a role-based function authorization module, which can assign various privileges according to the

different roles of the applications.

FRESCO [25] is a security development framework for OpenFlow applications, which is designed to

enable the rapid design and modular composition of software function modules. FRESCO provides many security software

modules that implement various security functions, such as attack deflectors, IDS logic, firewalls, scan detectors, and

corresponding APIs to invoke these modules.

C. Threats to the application layer and countermeasures

The top layer of SDN architecture is the application layer where attackers can tamper the network configuration, steal

information of the network and seize the network resources and so on through by inserting malware programs to the

application. Like this, attackers can interfere the normal operation of the control layer and affects the performance of the

network. Some of the security threats and countermeasures are given below.

1) Illegal access

Threat description

As per the specification of OpenFlow, applications can flexibly run on the controller and have privileges to access

network resources. Most of the applications run on the controller are developed by third-party organizations, not venders of

the controllers. Therefore, the lack of a standardization causes a serious security threats.

Countermeasures

To alleviate the above mentioned security threat, PermOF [26] is proposed. It is a fine-grained permission system which

can provide privilege control to OpenFLow controllers and applications running on top of it. PermOF suggests 18

permissions that proposes a customized framework and isolates the control traffic from the data traffic to achieve resource

isolation and accessc control.

Another proposal called NICE [27] proposed to automate the testing of OpenFlow applications to verify their

correctness. NICE is a solution for symbolic execution of event handlers, which can quickly explore the various modules of

controller programs.

2) Security rules and configuration conflict

Threats description

To provide the wide range of network services, the application layer needs security applications for accessing the security

interfaces of the controller. In addition with complexity of applications, conflits may appear between security rules which

results confusion of network services and management complexity.

Countermeasures

The flow policies are verified by a checking system model called Flover [28]. It is implemented based on NOX and can

provide a formal validation of the functions of an OpenFLow network’s security behavior. Also, the Flover uses a batch

mode for obtaining responses from the controller.

NetPlumber [29] is a policy detection tool, which can contiuously monitor network consistency caused by an

incremental change in the network’s state in real time.

V. CONCLUSION

In this paper, we briefly reviewed the architecture and characteristics of SDN. We explained how SDN worked and

analyzed the issues and countermeasures from a security perspective, and gave SDN great security characteristics of the

uniqueness and openness. Then, we discussed about the security of SDN and analyzed the issues in security from three

aspects: the data forwarding layer, the control layer and the application layer. Several preventive and mitigation techniques

were also described to address some of those security issues. In the future, network virtualization and middleboxes based on

cloud computing will be considered an important application for SDN, which will bring additional security threats.

Therefore, the issue of security in these applications is expected to draw increasing amounts of attention.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig, Software-Defined

Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[2] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN Security: A Survey,” in Future Networks and Services

(SDN4FNS), 2013 IEEE SDN for, Nov 2013, pp. 1–7

[3] Diego Kreutz, M. V.Ramos,Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig: "SDN-A

comprehensive survey.", IEEE, 2014

[4] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Turner J (2008) penFlow: enabling

innovation in campus networks. ACMSIGCOMM Comput Commun Rev 38(2):69– 74

[5] Open Networking Foundation. <https://www.opennetworking.org/index.php?lang=en/>.

[6] Liu J, Li Y, Chen M, Dong W, Jin D (2015) Software-defined internet of things for smart urban sensing. IEEE Commun

Mag 53(9):55–63

[7] Lara A, Kolasani A, Ramamurthy B (2014) Network innovation using openflow: a survey. IEEE Commun Surv Tutorials

16(1): 493–512

[8] Bernardo DV (2014) Software-defined networking and network function virtualization security architecture. Internet

Engineering Task Force.[Online]. Available: https://tools.ietf.org/html/ draftbernardo-sec-arch- sdnnvfarchitecture-00

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIRAU06053 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 391

[9] YangM, Li Y, Jin D, Zeng L,Wu X, Vasilakos A (2015) Software defined and virtualized future mobile and wireless

networks: a survey. ACM/Springer Mob Netw Appl 20(1):4–18

[10]. Yuan W, Deng P, Taleb T, Wan J, Bi C (2015) An unlicensed taxi identification model based on big data analysis.

IEEE Trans IntellTransp Syst. doi:10.1109/TITS.2015.2498180

[11] Jing Q, Vasilakos A, Wan J, Lu J, Qiu D (2014) Security of the internet of things: perspectives and challenges. Wirel

Netw 20(8): 2481–2501

[12] Namal S,Ahmad I, Gurtov A, YlianttilaM(2013) SDN based intertechnology load balancing leveraged by flow

admission control. In:IEEE SDN for Future Networks and Services (SDN4FNS),pp.1-5

[13] Zhaogang Shu, Jiafu Wan, DI Li, Jiaxiang Lin, Athanasios V. Vasilakos, Mohammed Imran (2016), Security in

Software-Defined Networking: Threats and Countermeasures. Springer, Mobile Networks and Applications, DOI

10.1007/s11036-016-0676-x.

[14] Dierks T (2008) The transport layer security (TLS) protocol version 1.2 [Online]. Available:

http://tools.ietf.org/html/rfc5246

[15] Al-Shaer E, Al-Haj S (2010) FlowChecker: configuration analysis and verification of federated OpenFlow

infrastructures. In:Proceedings of the 3rd ACM Workshop on Assurable and Usable Security Configuration, pp 37–44

[16] Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, Gu G (2012) A security enforcement kernel for OpenFlow

networks. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp 121–126

[17] Khurshid A, Zhou W, Caesar M, Godfrey P (2012) Veriflow: verifying network-wide invariants in real time. ACM

SIGCOMM Comput Commun Rev 42(4):467–472

[18] Sherwood R, Gibb G, Yap K K, Appenzeller G, Casado M, McKeown N, Parulkar G (2009) Flowvisor: a network

virtualization layer. OpenFlow Switch Consortium, Tech. Rep https://www.networkworld.com/article/3245173/software-

defined-networking/secure-your-sdn-controller.html

[19] Yao G, Bi J, Xiao P (2011) Source address validation solution with OpenFlow/NOX architecture. In: 19th IEEE

International Conference on Network Protocols (ICNP), pp 7–12 https://www.networkworld.com/article/2840273/sdn/sdn-

security-attack-vectors-and-sdn-hardening.html

[20] Shin S, Yegneswaran V, Porras P, Gu G (2013) Avant-guard: scalable and vigilant switch flow management in

software-defined networks. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security, pp 413–424.

[21] Wang H, Xu L, Gu G (2015) FloodGuard: a dos attack prevention extension in software-defined networks. In: 45th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp 239–250

[22] Lim S, Ha J I, Kim H, Kim Y, Yang S (2014) A SDN-oriented DDoS blocking scheme for botnet-based attacks. In:

IEEE Sixth International Conference on Ubiquitous and Future Networks (ICUFN), pp 63–68

[23] IETF Locator/ID Separation Protocol (LISP) [Online]. Available: http://datatracker.ietf.org/wg/lisp/

[24] Security-enhanced floodlight. [Online]. Available: http://www.sdncentral.com/education/toward-secure-sdn-

controllayer/2013/10/

[25] Shin S, Porras P, Yegneswaran V, Fong M, Gu G, Tyson M (2013) FRESCO: Modular Composable Security Services

for Software-Defined Networks. In : Proceedings of Network and Distributed Security Symposium, pp 1-16.

[26] Wen X, Chen Y, Hu C, Shi C, Wang Y (2013) Towards a secure controller platform for openflow applications. In:

Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp 171–172.

[27] Canini M, Venzano D, Peresini P, Kostic D, Rexford J (2012) A NICEway to test OpenFlow applications. In:

Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation.

[28] Son S, Shin S, Yegneswaran V, Porras P, Gu G (2013) Model checking invariant security properties in OpenFlow. In:

2013 I.E.International Conference on Communications (ICC), pp 1974–1979.

[29] Kazemian P, ChanM, Zeng H, Varghese G,McKeown N, Whyte S (2013) Real time network policy checking using

header space analysis. In: USENIX Symposium on Networked Systems Design and Implementation, pp 99–111.

http://www.jetir.org/

