t-NORM (δ, γ) -FUZZY BI-IDEAL OF A **NEAR-RING**

X. Arul Selvaraj^{1,2} ¹Department of Mathematics, Govt. Arts and Science College for Women, Bargur- 635104., Krishnagiri Dt.

> ²Mathematics Wing, D.D.E., Annamalai University, Annamalainagar- 608 002, India.

Abstract

In this paper we introduce the notion of a t-norm (δ, γ) -Fuzzy bi-ideal of a near-ring and obtain the characterization of a bi-ideal in terms of a t-norm (δ, γ) -Fuzzy bi-ideal of a near-ring. We establish that every t-norm (δ, γ) -Fuzzy left (resp. right) N-subgroup or t-norm (δ, γ) -Fuzzy left (resp. right) ideal of a near-ring is a t-norm (δ, γ) -Fuzzy-fuzzy bi-ideal of a near-ring. But the converse is not necessarily true. Further, we discuss the properties of t-norm (δ, γ) -Fuzzy bi-ideal of a near-ring.

Key words and phrases: t-norm (δ, γ) -Fuzzy sets, t-norm (δ, γ) -Fuzzy sublattices, t-norm (δ, γ) -Fuzzy subnear-ring, fuzzy two-sided N-subgroup. t-norm (δ, γ) -Fuzzy ideal, and t -norm (δ, γ) -Fuzzy bi-ideal.

1. Introduction

The notions of fuzzy ideals were introduced by S-Abou-Zaid in 1991[8,1]. The notion of fuzzy subgroup was introduced by A. Rosenfeld [5] in his pioneering paper. Subsequently the definition of fuzzy subgroup was generalized by Negoita and Ralescu [6]. Fuzzy ideals of a ring were first introduced by Liu [14]. T. Ali and A.K. Ray [7] studied the concepts of fuzzy sublattices and fuzzy ideals of a lattice. The notions of fuzzy subnear-ring, fuzzy ideal and fuzzy R-subgroup of a near-ring were introduced by Salah Abou-Zahid [8] and it has been studied by several authors [11,12,3,4]. We introduce the notion of a (δ, γ) -fuzzy bi-ideal of a near-ring and obtain the characterization of a bi-ideal in terms of a (δ, γ) -fuzzy bi-ideal of a near-ring. We establish that every (δ, γ) -fuzzy left (resp. right) N-subgroup or (δ, γ) -fuzzy left (resp. right) ideal of a near-ring is a (δ, γ) -fuzzy bi-ideal of a near-ring. But the converse is not necessarily true. Further, we discuss the properties of (δ, γ) -fuzzy bi-ideal of a near-ring and also, we prove a correspondence theorem between the families of fuzzy ideals of two homomorphic lattices. This is an extension of the result of M. J. Rani [10] and T. Manikantan [9].

2. Preliminaries

In this section We recall some definitions and results that will be needed in the sequel. The interval [0,1] is a lattice and this entity ([0,1], \leq) is denoted by I.

Definition 2.1 [16] A triangular norm, t-norm is a function $t:[0,1]\times[0,1]\to[0,1]$ satisfying, for each $a,b,c,d,\in[0,1]$, the following conditions:

- (i) t(0,0) = 0, t(a,1) = a; (ii) $t(a,b) \le t(c,d)$, whenever $a \le c,b \le d;$
- (iii) t(a,b) = t(b,a); and (iv) t(t(a,b),c) = t(a,t(b,c)).

Definition 2.2 [10] A fuzzy subset μ of X is said to be a fuzzy sublattice of X if $\forall x, y \in X$, (i) $\mu(x \lor y) \ge \mu(x) \land \mu(y)$, (ii) $\mu(x \land y) \ge \mu(x) \land \mu(y)$.

Definition 2.3[10] Let $\mu \in I^X$, then μ is called a fuzzy ideal of X if $\forall x, y \in X$, $(I_1), \ \mu(x \lor y) \ge \mu(x) \land \mu(y), \quad (I_2), \ \mu(x \land y) \ge \mu(x) \land \mu(y).$

If I_2 holds, then $\mu(x \wedge y) \ge \mu(x) \wedge \mu(y)$. Thus by I_1 and $I_2, \mu \in FL(X)$, (i.e) a fuzzy ideal of X is fuzzy sublattice of X.

Definition 2.4 [8] A fuzzy sub set A of N is called a fuzzy subnear-ring of N if $\forall x, y \in N$, (i) $A(x-y) \ge min\{A(x), A(y)\},$ (ii) $A(xy) \ge min\{A(x), A(y)\}.$

Definition 2.5 [5] A fuzzy sub set A of a group (G,+) is said to be a fuzzy subgroup of G if $\forall x, y \in G$, (i) $A(x+y) \ge min\{A(x), A(y)\}$, (ii) A(-x) = A(x), or equivalently $A(x-y) \ge min\{A(x), A(y)\}$. If A is a fuzzy subgroup of a group G, then $A(0) \ge A(x \forall x \in G)$.

Definition 2.6 [8] A fuzzy sub set A of N is said to be a fuzzy two-sided N -subgroup of Nif (i) A is a fuzzy subgroup of (N,+), (ii) $A(xy) \ge A(x) \forall x, y \in N$, (iii) $A(xy) \ge A(y) \ \forall x, y \in \mathbb{N}$. If A satisfies (i),(ii) then A is called a fuzzy right N -subgroup of N. If A satisfies (i) and (iii), then A is called a fuzzy left N-subgroup of N.

Definition 2.7 [8] A fuzzy sub set A of N is said to be a fuzzy ideal of N if

- (i) A is a fuzzy subnear-ring of N, (ii) $A(y+x-y) = A(x) \forall x, y \in N$,
- (iii) $A(xy) \ge A(y) \ \forall x, y \in \mathbb{N}$. (iv) $A(a(b+i)-ab) \ge A(i) \ \forall a,b,i \in \mathbb{N}$. A fuzzy subset with (i),(ii) and (iii) is called a fuzzy right ideal of N whereas a fuzzy subset with (i),(ii) and (iv) is called a fuzzy left ideal of N.

3. t-norm (δ, γ) -fuzzy bi-ideals of near-rings

Based on the notion of (λ, μ) -fuzzy ideals introduced by B. You [13]. In this section we introduce the notion of a t-norm (δ, γ) -fuzzy bi-ideal of a near-ring and obtain some of its characterizations and properties. In the following discussion, we always assume that $0 \le \delta < \gamma \le 1$

Definition 3.1 A fuzzy sub set A of a group (G,+) is said to be a t-norm (δ,γ) -fuzzy subgroup of G if $\forall x, y \in G$, (i) $A(x+y) \lor \delta \ge t(A(x), A(y), \gamma)$, (ii) $A(-x) \lor \delta = t(A(x), \gamma)$, or $A(x-y) \vee \delta \geq t(A(x),A(y),\gamma)$. If A is a fuzzy subgroup of a group G, then equivalently $A(0) \lor \delta \ge t(A(x), \gamma) \forall x \in G.$

Definition 3.2 A fuzzy sub set A of N is called a t-norm (δ, γ) -fuzzy subnear-ring of N if $\forall x, y \in N$, (i) $A(x-y) \lor \delta \ge t(A(x), A(y), \gamma)$, (ii) $A(xy) \lor \delta \ge t(A(x), A(y), \gamma)$.

Definition 3.3 A fuzzy sub set A of N is said to be a t-norm (δ, γ) -fuzzy two-sided N -subgroup of N if (i) A is a t-norm (δ, γ) -fuzzy subgroup of (N, +), (ii) $A(xy) \lor \delta \ge t(A(x), \gamma) \ \forall \ x, y \in N$, (iii) $A(xy) \lor \delta \ge t(A(y), \gamma) \ \forall \ x, y \in N$. If A satisfies (i),(ii) then A is called a t-norm (δ, γ) -fuzzy right N-subgroup of N. If A satisfies (i) and (iii), then A is called a t-norm (δ, γ) -fuzzy left N-subgroup of N.

Definition 3.4 A fuzzy sub set A of N is said to be a t-norm (δ, γ) -fuzzy ideal of N if (i) A is a t-norm (δ, γ) -fuzzy subnear-ring of N, (ii) $A(y+x-y) \vee \delta = t(A(x), \gamma) \forall x, y \in N$, (iii) $A(xy) \lor \delta \ge t(A(y), \gamma) \ \forall \ x, y \in N$. (iv) $A(a(b+i)-ab) \lor \delta \ge t(A(y), \gamma) \ \forall \ a, b, i \in N$. A fuzzy subset with (i),(ii) and (iii) is called a t-norm (δ, γ) -fuzzy right ideal of N whereas a fuzzy subset with (i), (ii) and (iv) is called a t-norm (δ, γ) -fuzzy left ideal of N.

Definition 3.5 Let A and B be two fuzzy subsets of N. Wedefine a fuzzy subset A*B of N $sup_{x=a(b+i)-ab}min\{(A(a),A(b),B(i)) \land \theta\} ifx = a(b+i)-ab,a,b,i \in \mathbb{N}$ 0 otherwise

where $x \in N$. Note that if N is zero-symmetric and $A(o) \lor \delta \ge t(A(x), \gamma) \ \forall \ x \in N$, then $A \circ B \subset A * B$.

Definition 3.6 A fuzzy subgroup A of N is called a t-norm (δ, γ) -fuzzy bi-ideal of N if $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subset t(A, \gamma).$

Example 3.7 Let N = 0, a, b, c be the near-ring with (N, +) as the Klein's four group and (N, -)as defined below (Scheme 15: (0,13,0,13) See [1], p.408 [15]).

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
С	c	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	b	0	b
b	0	0	0	0
c	0	b	0	b

Define a t-norm (δ, γ) -fuzzy subset $A: N \to [0,1]$ by

$$A(0) = 0.8, A(a) = 0.3, A(b) = 0.6, A(c) = 0.3$$
 and $\delta = 0.1$ and $\gamma = 0.9$. Then

$$(A \circ N \circ A)(0) = 0.8, (A \circ N \circ A)(a) = 0, (A \circ N \circ A)(b) = 0,$$

$$(A \circ N \circ A)(c) = 0, (A \circ N) * A)(0) = 0.8, (A \circ N) * A)(a) = 0,$$

$$(A \circ N) * A)(b) = 0, (A \circ N) * A)(c) = 0,$$

and so A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.8 Let $\{A_i : i \in J\}$ be any family of t-norm (δ, γ) -fuzzy bi-ideals of N. Then $A = \bigcap_{i \in I} A_i$ is a t-norm (δ, γ) -fuzzy bi-ideal of N, Where J be an index set.

Proof. By theorem 3.4 of [9], A is a t-norm (δ, γ) -fuzzy subgroup of N. Now for all $x \in N$. since $A = \bigcap_{i \in I} A_i \subseteq A_i$, for every $i \in J$, we have

$$(((A \circ N \circ A) \cap ((A \circ N) * A)(x))) \vee \delta \leq t((((A_i \circ N \circ A_i) \cap ((A_i \circ N) * A_i)(x))), \gamma)$$

(Since A_i is a t-norm (δ, γ) -fuzzy bi-ideal of N)

 $\leq t(A_i(x), \gamma)$ for every $i \in J$.

It follows that

$$(((A \circ N \circ A) \cap ((A \circ N) * A)(x))) \vee \delta \leq \inf\{t(A_i(x), \gamma) : i \in J\} = t(\langle \cap_{i \in J} A_i \rangle (x), \gamma) = t(A(x), \gamma).$$

Thus $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subset t(A, \gamma)$. So A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.9 Let A be a t-norm (δ, γ) -fuzzy subgroup of N. If $(A \circ N \circ A) \vee \delta \subseteq t(A, \gamma)$, then A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Proof. Assume that A is a t-norm (δ, γ) -fuzzy subgroup of N such that

$$(A \circ N \circ A) \vee \delta \subseteq t(A, \gamma)$$
. For all $x \in N$, we have

$$(((A \circ N \circ A) \cap ((A \circ N) * A)(x))) \vee \delta = t((A \circ N \circ A)(x), (A \circ N) * A)(x), \gamma) \leq t((A \circ N \circ A)(x), \gamma) \leq t((A(x)), \gamma)$$

Therefore $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subset t(A, \gamma)$. Hence A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.10 Let N be a zero-symmetric near-ring. If A is a t-norm (δ, γ) -fuzzy bi-ideal of N, then $(A \circ N \circ A) \vee \delta \subset t(A, \gamma)$.

Proof. Assume that A is a t-norm (δ, γ) -fuzzy bi-ideal of N. Then, we have $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subseteq t(A, \gamma)$. Since A is a fuzzy subgroup of N, $A(0) \lor \delta \ge t(A(x), \gamma) \ \forall \ x \in \mathbb{N}$. and since $N(x) = 1 \ \forall \ x \in \mathbb{N}$, we have $((A \circ N)(0)) \lor \delta \ge t((A \circ N)(x), \gamma) \forall x \in N$. since N is zero-symmetric, $((A \circ N) \circ A) \vee \delta \subseteq t(((A \circ N) * A), \gamma)$. Then it is clear that $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subset t(A, \gamma).$

Theorem 3.11 Let I be a non-empty subset of N and K_1 be a t-norm (δ, γ) -fuzzy subset of N. Then the following conditions are equivalent:

- (i) I is a t-norm (δ, γ) -fuzzy bi-ideal of N,
- (ii) K_1 is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Proof. First assume that I is a t-norm (δ, γ) -fuzzy bi-ideal of N. Let a be any element of N. If $a \in I$, then $K_1(a) \vee \delta \geq ((K_1 \circ N \circ K_1) \cap ((K_1 \circ N) * K_1))(a) \vee \delta \leq t(1, \gamma)$. If $a \notin I$, then $K_1(a) \vee \delta = t(0, \gamma)$ on the other hand assume that

$$((K_{1} \circ N \circ K_{1}) \cap ((K_{1} \circ N) * K_{1}))(a) \vee \delta = t(1, \gamma),$$
that is, $min\{(K_{1} \circ N \circ K_{1})(a)((K_{1} \circ N) * K_{1}))(a)\} \vee \delta = t(1, \gamma)$. Then
$$(K_{1} \circ N \circ K_{1})(a) \vee \delta = ((K_{1} \circ N) \circ K_{1})(a) \vee \gamma = t(sup_{a=pq}min\{(K_{1} \circ N), K_{1}(q)\}, \gamma)$$

$$= t(sup_{a=pq}min \Big\langle sup_{p=p_{1}p_{2}}min\{K_{1}(p_{1}), N(p_{2})\}, K_{1}(q)\Big\rangle, \gamma)$$
(since $N(x) = 1, \forall x \in N$) = $t(sup_{a=pq}min \Big\langle sup_{p=p_{1}p_{2}}min\{K_{1}(p_{1}), K_{1}(q)\}\Big\rangle, \gamma) = 1 \rightarrow (1)$ and
$$((K_{1} \circ N) * K_{1})(a) \vee \delta = t(sup_{a=n(m+j)-nm}min\{(K_{1} \circ N)(n), (K_{1} \circ N)(m), (K_{1}(j)\}, \gamma)$$

$$= t(sup_{a=n(m+j)-nm}min\{sup_{a=n_{1}n_{2}}K_{1}(n_{1}), sup_{m=m_{1}m_{2}}K_{1}(m_{1}), k_{1}(j)\}, \gamma) = 1 \rightarrow (2)$$

This implies that there exist elements $b, c, b_1, b_2, x, y, i, x_1, x_2, y_1, y_2$ in N with $a = bc = x(y+i) - xy, b = b_1, b_2, x = x_1x_2$ and $y = y_1y_2$ such that $K_1(b_1) = K_1(c) = K_1(x_1) = K_1(y_1) = K_1(i) = 1$. So $b_1, c, x_1, y_1, i \in I$. Therefore $a = bc = (b_1b_2)c \in INI$ and $a = x(y+i) - xy = (x_1x_2)((y_1y_2) + i) - (x_1x_2)(y_1y_2) \in (IN) *I$ and so $a \in (INI \cap (IN) * I) \lor \delta \subseteq t(I, \gamma)$ which contradicts $a \notin I$. Thus $K_1(a) \vee \delta = ((K_1 \circ N \circ K_1) \cap ((K_1 \circ N) * K_1))(a) \vee \delta = t(0, \gamma)$ This shows that $((K_1 \circ N \circ K_1) \cap ((K_1 \circ N) * K_1)) \vee \delta = K_1 \vee \delta$. By theorem 3.8 of [9], K_1 is a t-norm (δ, γ) -fuzzy subgroup of N. Hence K_1 is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Conversely, assume that K_1 is a t-norm (δ, γ) -fuzzy bi-ideal of N. Let a be any element of $INI \cap (IN) * I$. Then there exist elements b, b_2, x, y, x_2, y_2 of N and elements c, b_1, x_1, y_1, i of I such that $a = bc = x(y+i) - xy, b = b_1, b_2, x = x_1x_2$ and $y = y_1y_2$. Now $(K_1 \circ N \circ K_1)(a) \vee \delta = t(\sup_{a=pq} \min \left\langle \sup_{p=p_1,p_2} \min \{K_1(p_1),K_1(q)\} \right\rangle, \gamma) \geq t(\min \{K_1(b_1),K_1(c)\},\gamma) = t\{1,1\} = 1$ and so $(K_1 \circ N \circ K_1)(a) \vee \delta = 1$. By (2), we have $((K_1 \circ N) * K_1)(a) \vee \delta = t(sup_{a=n(m+j)-nm}min\{sup_{a=n,n_2} K_1(n_1), sup_{m=m,m_2} K_1(m_1), k_1(j)\}, \delta)$ $\geq t\{K_1(x_1), K_1(y_1), K_1(i)\} = t\{1,1,1\} = 1$ and so $(K_1 \circ N \circ K_1)(a) \vee \delta = 1$.

Therefore

 $t(K_1(a) \lor \delta \ge ((K_1 \circ N \circ K_1) \cap ((K_1 \circ N) * K_1))(a), \gamma) = t(min\{(K_1 \circ N \circ K_1)(a), ((K_1 \circ N) * K_1)(a)\}, \gamma) = 1$

Thus $a \in I$. So $INI \cap (IN) * I \subseteq I$. By theorem 3.8 of [9], I is a subgroup of N. This shows that I is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.12 Every t-norm (δ, γ) -fuzzy right N-subgroup of N is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Proof. Let A be a t-norm (δ, γ) -fuzzy right N-subgroup of N. Choose $a,b,c,x,y,i,b_1,b_2,x_1,x_2,y_1,y_2$ in N such that $a=bc=x(y+i)-xy,b=b_1,b_2,x=x_1x_2$ and $y=y_1y_2$. Then

$$\begin{split} &(((A \circ N \circ A) \cap ((A \circ N) * A))(a)) \vee \delta \\ &= t\{((A \circ N) \circ A)(a), ((A \circ N) * A)(a), \gamma\} = t(\min\{\sup_{a=bc} \min\{(A \circ N)(b), A(c)\}, \\ &((A \circ N) * A)(x(y+i) - xy)\}, \gamma) = t(\min\{\sup_{a=bc} \min\left[\sup_{b=b_1} b_2 \min\{A(b_1), N(b_2)\}, A(c)\right], \\ &((A \circ N) * A)(x(y+i) - xy)\}, \gamma). \end{split}$$

(Since

$$N(z) = 1 \ \forall \ z \in N.) = t(min\{sup_{a=bc}min \left\lceil sup_{b=b_1b_2}A(b_1), A(c) \right\rceil, ((A \circ N) * A)(x(y+i) - xy)\}, \gamma).$$

(Since A is a t-norm (δ,γ) -fuzzy right N-subgroup of N, we have $A(bc)\vee\delta=A((b_1b_2)c)\vee\delta=A(b_1(b_2c))\vee\delta\geq t(A(b_1),\gamma)$

$$\leq t(\min\{\sup_{a=bc}\min\{A(bc),N(c)\},N(x(y+i)-xy)\},\gamma)\bmod*3.8cm$$

$$= t(min\{A(bc), N(x(y+i)-xy)\}, \gamma) \bmod *3.8cm = t(A(bc), \gamma) = t(A(a), \gamma).$$

Thus
$$((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \lambda \subseteq t(A, \gamma)$$
.

Hence A is a t-norm (δ, γ) -fuzzy bi- ideal of N.

Theorem 3.13 Every t-norm (δ, γ) -fuzzy left N-subgroup of N is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Proof. Let A be a t-norm (δ, γ) -fuzzy left N-subgroup of N. Choose $a,b,c,x,y,i,c_1,c_2,x_1,x_2,y_1,y_2$ in N such that $a=bc=x(y+i)-xy,c=c_1,c_2,x=x_1x_2$ and $y=y_1y_2$. Then

$$(((A \circ N \circ A) \cap ((A \circ N) * A))(a)) \vee \delta$$

$$= min\{((A \circ N) \circ A)(a), ((A \circ N) * A)(a), \gamma\}$$

$$=t(min\{sup_{a=bc}min\{A(b),(N\circ A)(c)\},((A\circ N)*A)(x(y+i)-xy)\},\gamma)$$

$$= t(min\{sup_{a=bc}min\Big[A(b), sup_{c=c_1C_2}min\{N(c_1), A(c_2)\}\Big], ((A \circ N) * A)(x(y+i) - xy)\}, \gamma)$$

$$= t(\min\{\sup_{a=bc}\min\Big[A(b),\sup_{c=c_1C_2}A(c_2)\Big],((A\circ N)*A)(x(y+i)-xy)\},\gamma)$$

(Since A is a t-norm (δ, γ) -fuzzy left N-subgroup of N, we have

$$A(bc) \lor \delta = A(b(c_1c_2)) \lor \delta = A((bc_1)c_2) \lor \delta \ge t(A(c_2), \gamma)$$

 $\leq t(min\{sup_{a=bc}min\{N(b),A(bc)\},N(x(y+i)-xy)\},\gamma) \bmod *3.8cm = t(A(bc),\gamma) = t(A(a),\gamma).$

Thus $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subseteq t(A, \gamma)$.

Hence A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.14 Every t-norm (δ, γ) -fuzzy two sided N-subgroup of N is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Proof. The proof is straightforward from Theorem (3.12) and Theorem (3.13).

Theorem 3.15 Every t-norm (δ, γ) -fuzzy left ideal of N is a t-norm (δ, γ) -fuzzy bi-ideal of N .

Proof. Let A be a t-norm (δ, γ) -fuzzy left ideal of N. Choose $a, b, c, x, y, i, b_1, b_2, x_1, x_2, y_1, y_2$ in N such that a = bc = x(y+i) - xy, $b = b_1, b_2, x = x_1x_2$ and $y = y_1y_2$. Then $(((A \circ N \circ A) \cap ((A \circ N) * A))(a)) \vee \delta = \min\{((A \circ N) \circ A)(a), ((A \circ N) * A)(a), \gamma\}$ $= t(min\{sup_{a=bc}min\{(A \circ N)(b), A(c)\}, ((A \circ N) * A)(x(y+i) - xy)\}, \gamma)$ $= t(min\{sup_{a=bc}min\{(A \circ N)(b_1b_2), A(c)\}, sup_{a=x(y+i)-xy}min\{(A \circ N)(x), (A \circ N)(y), A(i)\}\}, \gamma)$ (Since $A \circ N \subset N$ and since A is a (δ, γ) -fuzzy left ideal of $N, A(x(y+i)-xy) \lor \delta \ge t(A(i), \gamma)$ $t \leq min\{sup_{a=bc}min\{(N)(b_1b_2), N(c)\}, sup_{a=x(y+i)=xy}min\{(N)(x), (N)(y), A(x(y+i)-xy)\}\}, \gamma)$ $= t(A(x(y+i)-xy))\}, \gamma) \operatorname{mod}^* 2.5cm = A(a) \wedge \gamma.$

Therefore $((A \circ N \circ A) \cap ((A \circ N) * A)) \vee \delta \subseteq t(A, \gamma)$. Hence A is a t-norm (δ, γ) -fuzzy bi-ideal of N.

Theorem 3.16 Every t-norm (δ, γ) -fuzzy right ideal of N is a t-norm (δ, γ) -fuzzy bi-ideal **Proof.** The proof is similar to that of Theorem (3.12).

Theorem 3.17 Every t-norm (δ, γ) -fuzzy ideal of N is a t-norm (δ, γ) -fuzzy bi-ideal of N. **Proof.** The proof is straightforward from Theorem (3.15) and Theorem (3.16).

Example 3.18 Let N = 0, a, b, c be the near-ring with (N, +) as the Klein's four group and (N,.) as defined below (Scheme 18: (7,7,1,1) See [1], p.408[15]).

+	0	a	b	c
0	0	a	b	C
a	a	0	c	b
b	b	c	0	a
С	c	b	a	0

		0	a	b	c
	0	0	0	0	0
	a	a	a	a	a
١	b	0	0	b	b
	c	a	a	c	c

Define a t-norm (δ, γ) -fuzzy subset $A: N \to [0,1]$ by

$$A(0) = 0.9, A(a) = 0.4, A(b) = 0.4, A(c) = 0.7$$
 and $\delta = 0.1$ and $\gamma = 0.95$. Then $(A \circ N \circ A)(0) = 0.9, (A \circ N \circ A)(a) = 0.7,$

$$(A \circ N \circ A)(b) = 0.4, (A \circ N \circ A)(c) = 0.7, (A \circ N) * A)(0) = 0.9,$$

$$(A \circ N) * A)(a) = 0, (A \circ N) * A)(b) = 0.7, (A \circ N) * A)(c) = 0.$$

Therefore A is a t-norm (δ, γ) -fuzzy bi-ideal of N. Since $A(a) \vee \delta = A(ca) \vee \delta < t(A(c), \gamma)$ and $A(a) \lor \delta = A(a0) \lor \delta < t(A(0), \gamma)$, A is not a t-norm (δ, γ) -fuzzy two-sided N-subgroup of N. Since $A(a) \lor \delta = A(c0) \lor \delta < t\{A(c), A(0), \gamma\}$, A is not a t-norm (δ, γ) -fuzzy subnear-ring of N and so A is not a t-norm (δ, γ) -fuzzy ideal of N.

References

- [1] S. Abou-Zaid, on Fuzzy ideals and Fuzzy quotient ring, Fuzzy sets and systems 59 (1993), 205-210.
- [2] Tazid Ali, On direct product of fuzzy subrings The Journal of Fuzzy Mathematics, Vol.17,No.2,2009,481-485.
- [3] A.L. Narayanan, Contribution to the algebraic structures in fuzzy theory, Ph.D. Thesis, Annamalai university, India,(2001).
- [4] A.L. Narayanan, Fuzzy ideals on strongly regular near-rings, The journal of the Indian Math. Soc: Vol.69. Nos.1-4,(2002),193-199.
- [5] A. Rosenfeld, Fuzzy groups, J. Math. Anal. And Appl., 35 (1971),512-517.
- [6] C. V. Negoita and D. A. Ralescu, Applications of fuzzy sets to system analysis, John wiley and sons, New York, Toronto, (1975).
- [7] T. Ali and A.K. Ray, Fuzzy sublattices and fuzzy ideals, F.S.A.I.Vol.10, No.1-2(2004),5-13.
- [8] Salah Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems, 44(1991),139-146.
- [9] T.Manikantan, Fuzzy Bi-ideals of Near-rings, The Journal of Fuzzy Mathematics, Vol.17, No.3,(2009),659-671.
- [10] M. J. Rani, On The Lattice of Fuzzy Ideals of A Lattice, The Journal of Fuzzy Mathematics, Vol.16, No.4,(2008),981-989.
- [11] Kyung Ho Kim and Young Bae Jun, On fuzzy *R* -subgroups of near-rings, J. Fuzzy Mathematics, II(3)(2003), 567-580.
- [12] Kyung Ho Kim and Young Bae Jun, Normal fuzzy *R* -subgroups in near-rings, Fuzzy Sets and Systems, 121(2001), 341-345.
- [13] Bingxue Yao (λ , μ)-fuzzy subrings and (λ , μ)-fuzzy ideals, The Journal of Fuzzy Mathematics Vol. 15, No. 4, (2007), 981-987.
- [14] Wang-jin-Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982),133-139.
- [15] G. Pilz, Near-rings: The theory and its application, North-Holland Publishingcompany, Arnstendam, 1983.
- [16] Rajesh Kumar, 1993, Fuzzy Algebra, Delhi Pub. sec 1.2.14, page no. 07.