Fuzzy e-closed and Generalized Fuzzy e-closed Sets in Double Fuzzy Topological Spaces

${ }^{1}$ P. Periyasamy, $\quad{ }^{2}$ V. Chandrasekar, $\quad{ }^{3} G$. Saravanakumar and ${ }^{4}$ A. Vadivel
${ }^{1}$ Department of Mathematics, Kandaswamy Kandar's College, P-velur, Tamil Nadu-638 182
${ }^{2}$ Department of Mathematics, Kandaswamy Kandar's
College, P-velur, Tamil Nadu-638 182,
${ }^{3}$ Department of Mathematics, Annamalai
University, Annamalainagar, Tamil Nadu-608 002
${ }^{4}$ Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu-639 005

Abstract

The purpose of this paper is to introduce and study a new class of fuzzy sets called (r, s) -generalized fuzzy e-closed sets in double fuzzy topological spaces. Furthermore, the relationship between the new concepts are introduced and established with some interesting examples.
Keywords and phrases: Double fuzzy topology (r, s) -generalized fuzzy e-closed sets.
AMS (2000) subject classification: 54A40, 03E72, 45D05

1.Introduction

A progressive development of fuzzy sets [9] has been made to discover the fuzzy analogues of the crisp sets theory. On the other hand, the ideal of intuitionistic fuzzy sets was first introduced by Atanassov [2]. Later on, Coker [3] presented the notion of intuitionistic fuzzy topology. Samanta and Mondal [7], introduced and characterized the intuitonistic gradation of openness of fuzzy sets which is a generalization of smooth topology and the topology of intuitionistic fuzzy sets. The name "intuitionistic" is disconnected in mathematics and applications. Gracia and Rodabaugh [5] conclued that they word under the name "double". In 2008, Erdal Ekici [4] introduced e-open sets in general topology. In 2014, Seenivasan et. al [8] introduce fuzzy e-open sets in fuzzy topological spaces. As a generalization of the results in References [4, 8], we introduce and study (r, s) -fuzzy e-closed sets and (r, s) -generalized fuzzy e-closed sets in double fuzzy topological spaces. Also the relationship between (r, s) -fuzzy e-closed (resp. (r, s) -generalized fuzzy e-closed) sets and and some other sets are introduced and established with some interesting couter examples.

2. Preliminaries

Throughout this paper, X will be a non-empty set, $I=[0,1], I_{0}=(0,1]$ and $I_{1}=[0,1)$. A fuzzy set A is quasi-coincident with a fuzzy set B (denoted by, $A q B$) iff there exists $x \in X$ such that $A(x)+B(x)>1$ and they are not quasi-coincident otherwise (denoted by, $A \bar{q} B$). The family of all fuzzy sets on X is denoted by I^{X}. By $\underline{0}$ and $\underline{1}$, we denote the smallest and the greatest fuzzy sets on X. For a fuzzy set $A \in I^{X}, \underline{1}-A$ denotes its complement. All other notations are standard notations of fuzzy set theory. Now, we recall the following definitions which are useful in the sequel.
Definition 2.1 [7] A double fuzzy topology ($T, T^{\mathfrak{a}}$) on X is a pair of maps $T, T^{\mathfrak{a}}: I^{X} \rightarrow I$, which satisfies the following properties:
(i) $T(A) \leq \underline{1}-T^{\mathfrak{a}}(A)$ for each $A \in I^{X}$.
(ii) $T\left(A_{1} \wedge A_{2}\right) \geq T\left(A_{1}\right) \wedge T\left(A_{2}\right)$ and $T^{\mathfrak{a}}\left(A_{1} \wedge A_{2}\right) \leq T^{\mathfrak{a}}\left(A_{1}\right) \vee T^{\mathfrak{a}}\left(A_{2}\right)$, for each $A_{1}, A_{2} \in I^{X}$.
(iii) $T\left(\vee_{i \in \Gamma} A_{i}\right) \geq \wedge_{i \in \Gamma} T\left(A_{i}\right)$ and $T^{\mathfrak{a}}\left(\vee_{i \in \Gamma} A_{i}\right) \leq \vee_{i \in \Gamma} T^{\mathfrak{a}}\left(A_{i}\right)$ for each $A_{i} \in I^{X}, i \in \Gamma$.

The triplet ($X, T, T^{\mathfrak{a}}$) is called a double fuzzy topological space (briefly, dfts). A fuzzy set A is called an (r, s) -fuzzy open (briefly, (r, s)-fo) if $T(A) \geq r$ and $T^{\AA}(A) \leq s$. A fuzzy set A is called an (r, s)-fuzzy closed (briefly, (r, s)-fc) set iff $\underline{1}-A$ is an (r, s)-fo set.
Theorem 2.1 [6] Let ($X, T, T^{\text {á }}$) be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $A \in I^{X}$ are defined by
$C_{T, T^{\mathfrak{a}}}(A, r, s)=\wedge^{\left\{B \in I^{X} \mid A \leq B, T(\underline{1}-B) \geq r, T^{\text {à }}(\underline{1}-B) \leq s\right\} . ~}$
$I_{T, T^{\mathfrak{a}}}(A, r, s)=\vee\left\{B \in I^{X} \mid A \geq B, T(B) \geq r, T^{\hat{a}}(B) \leq s\right\}$.
Where $r \in I_{0}$ and $s \in I_{1}$ such that $r+s \leq 1$.
Definition 2.2 [1] Let ($X, T, T^{\mathfrak{a}}$) be a dfts. For each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$. A fuzzy set A is called an (r, s) -generalized fuzzy closed (briefly, (r, s)-gfc) if $C_{T, T^{\mathfrak{a}}}(A, r, s) \leq B, A \leq B, T(B) \geq r$ and $T^{\mathfrak{a}}(B) \leq s$. A is called an (r, s)-generalized fuzzy open (briefly (r, s)-gfo) iff $1-A$ is (r, s)-gfc set.

3. (r, s) fuzzy e-closed and (r, s)-generalized fuzzy e-closed sets

Definition 3.1 Let $\left(X, T, T^{\hat{a}}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$. A fuzzy set A is called an (r, s)-fuzzy regular open (briefly, $(r, s)-$ fro $)$ if $A=I_{T, T^{\mathfrak{a}}}\left(C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$ and ($\left.r, s\right)$-fuzzy regular closed (briefly, $(r, s)-f r c)$ if if $A=C_{T, T^{\mathfrak{a}}}\left(I_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$.
Definition 3.2 Let $\left(X, T, T^{\hat{a}}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we define operators $\delta C_{T, T^{\mathfrak{a}}}$ and $\delta I_{T, T^{\mathfrak{a}}}: I^{X} \times I_{0} \times I_{1} \rightarrow I^{X}$ as follows: $\delta C_{T, T^{\mathfrak{a}}}(A, r, s)=\wedge\left(B \in I^{X}: A \leq B, B\right.$ is $\left.(r, s)-f r c\right\}$ and $\delta I_{T, T^{\mathfrak{a}}}(A, r, s)=\bigvee\left\{B \in I^{X}: B \leq A, B\right.$ is $\left.(r, s)-f r o\right\}$.
Definition 3.3 Let $\left(X, T, T^{a}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$: a fuzzy set A is called an
(i) (r, s)-fuzzy δ semiopen (briefly, $(r, s)-f \delta s o)$ if $A \leq C_{T, T^{\text {a }}}\left(\delta I_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$ and (r, s)-fuzzy
δ semi closed (briefly, $(r, s)-f \delta s c)$ if $A \geq I_{T, T^{\mathfrak{a}}}\left(\delta C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$.
(ii) (r, s)-fuzzy δ pre open (briefly, $(r, s)-f \delta p o)$ if $A \leq I_{T, T^{\text {a }}}\left(\delta C_{T, T^{\text {a }}}(A, r, s), r, s\right)$ and (r, s)-fuzzy
δ pre closed (briefly, $(r, s)-f \delta p c)$ if $A \geq C_{T, T^{\text {a }}}\left(\delta I_{T, T^{\text {a }}}(A, r, s), r, s\right)$.
(iii) (r, s)-fuzzy β open (briefly, $(r, s)-f \beta o)$ if $A \leq C_{T, T^{\mathfrak{a}}}\left(I_{T, T^{\mathfrak{a}}}\left(C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) r, s\right)$ and (r, s)-fuzzy β closed (briefly, $(r, s)-f \beta c)$ if $A \geq I_{T, T^{\mathfrak{a}}}\left(C_{T, T^{\mathfrak{a}}} \quad\left(I_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) r, s\right)$.
(iv) (r, s)-fuzzy e-open (briefly, $(r, s)-f e o)$ if
$A \leq C_{T, T^{\mathfrak{a}}}\left(\delta I_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) \vee I_{T, T^{\mathfrak{a}}}\left(\delta C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$ and (r, s)-fuzzy e-closed (briefly, $\left.(r, s)-f e c\right)$ if $A \geq I_{T, T^{\mathfrak{a}}}\left(\delta C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) \wedge C_{T, T^{\mathfrak{a}}}\left(\delta I_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$.
Definition 3.4 Let $\left(X, T, T^{\text {à }}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we define operators $e C_{T, T^{\mathfrak{a}}} \quad$ (resp. $\delta S C_{T, T^{\mathfrak{a}}}$, $\delta P C_{T, T^{\mathfrak{a}}}$ and $\beta C_{T, T^{\mathfrak{a}}}$) and $e I_{T, T^{\mathfrak{a}}}\left(\right.$ resp. $\delta S I_{T, T^{\mathfrak{a}}}, \delta P I_{T, T^{\mathfrak{a}}}$ and $\left.\beta I_{T, T^{\mathfrak{a}}}\right): I^{X} \times I_{0} \times I_{1} \rightarrow I^{X}$ follows:
$e C_{T, T^{\mathfrak{a}}}\left(\right.$ resp. $\delta S C_{T, T^{\mathfrak{a}}}, \delta P C_{T, T^{\text {a }}}$ and $\left.\beta C_{T, T^{\text {a }}}\right)(A, r, s)=$
$\wedge B \in I^{X}: A \leq B, B$ is(r,s) $-f e c($ resp. $f \delta s c, f \delta p c$ and $\left.f \beta c)\right\}$
and
$e I_{T, T^{\text {à }}}\left(\right.$ resp. $\delta S I_{T, T^{\mathfrak{a}}}, \delta P I_{T, T^{\text {áa }}}$ and $\left.\beta I_{T, T^{\text {áa }}}\right)(A, r, s)=$
$\vee\left\{B \in I^{X}: B \leq A, B\right.$ is(r,s) $-f e o(r e s p . f \delta s o, f \delta p o$ and $\left.f \beta o)\right\}$.
Definition 3.5 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be a dfts, $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}, A$ is called an (r, s)-fuzzy e-Q -neighborhood of $x_{t} \in P_{t}(X)$ if there exists an (r, s)-feo set $B \in I^{X}$ such that $x_{t} q B$ and $B \leq A$.
The family of all (r, s)-fuzzy $e-Q$-neighborhood of x_{t} denoted by $e-Q\left(x_{t}, r, s\right)$.
Theorem 3.1 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, the operator $e C_{T, T^{\mathfrak{a}}}$ satisfies the following statements:
(i) $e C_{T, T^{\mathfrak{a}}}(\underline{0}, r, s)=\underline{0}, e C_{T, T^{\mathfrak{a}}}(\underline{1}, r, s)=\underline{1}$.
(ii) $A \leq e C_{T, T^{\text {a }}}(A, r, s)$.
(iii) If $A \leq B$, then $e C_{T, T^{\mathfrak{a}}}(A, r, s) \leq e C_{T, T^{\text {a }}}(B, r, s)$.
(iv) If A is an (r, s)-fec, then $A=e C_{T, T^{\text {a }}}(A, r, s)$.
(v) If A is an (r, s)-feo, then $B q A$ iff $B q e C_{T, T^{\text {a }}}(A, r, s)$.
(vi) $e C_{T, T^{\mathfrak{a}}}\left(e C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)=e C_{T, T^{\mathfrak{a}}}(A, r, s)$.
(vii) $e C_{T, T^{\mathfrak{a}}}(A, r, s) \vee e C_{T, T^{\mathfrak{a}}}(B, r, s) \leq e C_{T, T^{\mathfrak{a}}}(A \vee B, r, s)$.
(viii) $e C_{T, T^{\mathfrak{a}}}(A, r, s) \wedge e C_{T, T^{\mathfrak{a}}}(B, r, s) \geq e C_{T, T^{\text {a }}}(A \wedge B, r, s)$.

Proof. (i), (ii), (iii) and (iv) are proved easily.
(v) Let $B \bar{q} A$ and B is an (r, s) feo set, then $A \leq \underline{1}-B$. But we have, $B q A$ iff $B q e C_{T, T^{\mathfrak{a}}}(A, r, s)$ and $e C_{T, T^{\mathrm{a}}}(A, r, s) \leq e C_{T, T^{\mathfrak{a}}}(\underline{1}-B, r, s)=\underline{1}-B$, so $\quad \overline{B q e} C_{T, T^{\mathfrak{a}}}(A, r, s)$, which is contradiction. Then $B q A$ iff $B q e C_{T, T^{\mathrm{a}}}(A, r, s)$.
(vi) Let x_{t} be a fuzzy point such that $x_{t}{ }^{\prime} e C_{T, T^{\mathfrak{a}}}(A, r, s)$. Then there is an (r, s)-fuzzy $e-Q$ neighborhood B of x_{t} such that $B \bar{q} A$. But by (v), we have an (r, s)-fuzzy e - Q-neighborhood B of x_{t} such that $\quad B \bar{q} e C_{T, T^{\mathfrak{a}}}(A, r, s)$. Also, $\quad x_{t} \check{Z} e C_{T, T^{\mathrm{a}}}\left(e C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)$. Then $e C_{T, T^{\mathfrak{a}}}\left(e C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) \leq e C_{T, T^{\text {a }}}(A, r, s)$. But we have, $e C_{T, T^{\mathfrak{a}}}\left(e C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right) \geq e C_{T, T^{\mathfrak{a}}}(A, r, s)$. Therefore $e C_{T, T^{\mathfrak{a}}}\left(e C_{T, T^{\mathfrak{a}}}(A, r, s), r, s\right)=e C_{T, T^{\mathfrak{a}}}(A, r, s)$.
(vii) and (viii) are obvious.

Similarly the other operators (i.e) $\delta S C_{T, T^{\mathfrak{a}}}, \delta P C_{T, T^{\mathfrak{a}}}$ and $\beta C_{T, T^{\mathfrak{a}}}$ satisfies the above conditions.
Theorem 3.2 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be a dfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, the operator $e I_{T, T^{\AA}}$ satisfies the following statements:
(i) $e I_{T, T^{\text {a }}}(\underline{1}-A, r, s)=\underline{1}-e C_{T, T^{\text {a }}}(A, r, s), e C_{T, T^{\mathfrak{a}}}(\underline{1}-A, r, s)=\underline{1}-e I_{T, T^{\text {a }}}(A, r, s)$.
(ii) $e I_{T, T^{\mathfrak{a}}}(\underline{0}, r, s)=\underline{0}, e I_{T, T^{\mathfrak{a}}}(\underline{1}, r, s)=\underline{1}$.
(iii) $e I_{T, T^{\mathrm{T}}}(A, r, s) \leq A$.
(iv) If A is an (r, s)-feo, then $A=e I_{T, T^{\mathfrak{a}}}(A, r, s)$.
(v) If $A \leq B$, then $e I_{T, T^{\text {a }}}(A, r, s) \leq e I_{T, T^{\text {a }}}(B, r, s)$.
(vi) $e I_{T, T^{\text {à }}}\left(e I_{T, T^{\text {a }}}(A, r, s), r, s\right)=e I_{T, T^{\mathfrak{a}}}(A, r, s)$.
(vii) $e I_{T, T^{\text {a }}}(A \vee B, r, s) \geq e I_{T, T^{\text {a }}}(A, r, s) \vee e I_{T, T^{\text {a }}}(B, r, s)$.
(viii) $e I_{T, T^{\mathfrak{a}}}(A \vee B, r, s) \leq e I_{T, T^{\mathfrak{a}}}(A, r, s) \wedge e I_{T, T^{\mathfrak{a}}}(B, r, s)$.

Proof. It is similar to Theorem 3.1.
Similarly the other operators (i.e) $\delta S I_{T, T^{\mathfrak{a}}}, \delta P I_{T, T^{\mathfrak{a}}}$ and $\beta I_{T, T^{\text {a }}}$ satisfies the above conditions.
Definition 3.6 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be adfts. Then for each $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$: a fuzzy set A is called
(i) (r, s)-generalized fuzzy δ semiopen (briefly, (r, s)-gf δs o) if $B \leq \delta S I_{T, T^{\text {a }}}(A, r, s)$ whenever $B \leq A$ and $T(\underline{1}-B) \geq r, T^{\text {à }}(\underline{1}-B) \leq s$.
(ii) (r, s)-generalized fuzzy δ preopen (briefly, (r, s)-gf δp o) if $B \leq \delta P I_{T, T^{\text {a }}}(A, r, s)$ whenever $B \leq A$ and $T(1-B) \geq r, T^{\text {à }}(\underline{1}-B) \leq s$.
(iii) (r, s)-generalized fuzzy β-open (briefly, (r, s)-gf β o) if $B \leq \beta I_{T, T^{\mathfrak{a}}}$ (A, r, s) whenever $B \leq A$ and $T(\underline{1}-B) \geq r, T^{\mathfrak{a}}(\underline{1}-B) \leq s$.
(iv) (r, s)-generalized fuzzy e-open (briefly, (r, s)-gf $e 0$) if $B \leq e I_{T, T^{\mathfrak{a}}}(A, r, s)$ whenever $B \leq A$ and $T(\underline{1}-B) \geq r, T^{\mathfrak{a}}(\underline{1}-B) \leq s$.
(v) (r, s)-generalized fuzzy δ semiclosed (briefly, $(r, s)-\operatorname{gf} \delta s \mathrm{c})$ if $\delta S C_{T, T^{\text {à }}} \quad(A, r, s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\text {a }}(B) \leq s$.
(vi) (r, s)-generalized fuzzy δ preclosed (briefly, (r, s)-gf $\delta p \mathrm{c}$) if $\delta P C_{T, r^{\AA}} \quad(A, r, s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathfrak{a}}(B) \leq s$.
(vii) (r, s)-generalized fuzzy β-closed (briefly, (r, s)-gf β c) if $\beta C_{T, T^{a ̊}}(A, r, s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathfrak{a}}(B) \leq s$.
(viii) (r, s)-generalized fuzzy e-closed (briefly, (r, s)-gf e c) if $e C_{T, T^{a}}(A, r, s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathfrak{a}}(B) \leq s$.
Example Let $3.1 \quad X=\{x, y\}$. Defined B, C, D and E by $B(x)=(0.3), B(y)=(0.4) ; C(x)=(0.4), C(y)=(0.5) ; D(x)=(0.8), D(y)=(0.8) ; E(x)=(0.4)$, $E(y)=(0.6) ; F(x)=0.4, F(y)=0.4$.
$T(A)=\left\{\begin{array}{cc}1, & \text { if } A \in\{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text { if } A \in\{B, C\}, \quad T^{\text {a }}(A)=\left\{\begin{array}{cl}0, & \text { if } A \in\{\underline{0}, \underline{1}\}, \\ 0, & \text { otherwise. }\end{array} \quad \text { if } A \in\{B, C\},\right. \\ \frac{1}{2}, & \text { otherwise. }\end{array}\right.$
(i) C is an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{f} \delta \mathrm{sc}\left(\right.$ resp. $\left.\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{gf} \delta \mathrm{sc}\right)$ but not an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{fc}\left(\right.$ resp. $\left(\frac{1}{2}, \frac{1}{2}\right)$-gfc).
(ii) C is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-fec (resp. $\left.\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{gfec}\right)$ but not an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{f} \delta \mathrm{pc}\left(\right.$ resp. $\left.\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{gf} \delta \mathrm{pc}\right)$.
(iii) D is an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{f} \delta \mathrm{pc},\left(\frac{1}{2}, \frac{1}{2}\right)-e \mathrm{c}$ but not an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{fc},\left(\frac{1}{2}, \frac{1}{2}\right)-\delta \mathrm{sc}$.
(iv) E is an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{f} \beta \mathrm{c}$ but not an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{fec}$.
(v) F is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-gf $e \mathrm{c},\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{g} \delta \mathrm{pc}$ but not an $\left(\frac{1}{2}, \frac{1}{2}\right)-\mathrm{gf} \delta \mathrm{sc},\left(\frac{1}{2}, \frac{1}{2}\right)$-gfc.
Example Let $3.2 \quad X=\{x, y\}$. Defined G, H, I, J, K and L by
$G(x)=(0.1), G(y)=(0.3) ; H(x)=(0.3), H(y)=(0.2) ; I(x)=(0.1), I(y)=(0.2)$;
$J(x)=(0.3), J(y)=(0.3) ; K(x)=0.7$,
$K(y)=0.6 ; L(x)=(0.4), L(y)=(0.3)$.
$T(A)=\left\{\begin{array}{c}1, \quad \text { if } A \in\{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, \quad \text { if } A \in\{G, H, I, J, K\}, \\ 0, \quad \text { otherwise. }\end{array}\right.$
$T^{\text {à }}(A)=\left\{\begin{array}{c}0, \quad \text { if } A \in\{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, \\ \text { if } A \in\{G, H, I, J, K\}, \\ 1, \quad \text { otherwise } .\end{array}\right.$
(i) L is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-gf β c but not an $\left(\frac{1}{2}, \frac{1}{2}\right)$-gf e sc.

Theorem 3.3 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be a dfts, $A \in I^{X}$, is (r, s)-gfeo set $r \in I_{0}$ and $s \in I_{1}$, if and only if $B \leq e I_{T, T^{\mathfrak{a}}}(A, r, s)$ whenever $B \leq A, T(\underline{1}-B) \geq r$ and $T^{\mathfrak{a}}(\underline{1}-B) \leq s$.
Proof. Suppose that A is an (r, s)-gfeo set in I^{X}, and let $T(\underline{1}-B) \geq r$ and $T^{\dot{~}}(\underline{1}-B) \leq s$ such that $B \leq A$. By the definition, $\underline{1}-A$ is an (r, s)-gfec set in I^{X}. So, $e C_{T, T^{\mathfrak{a}}}(\underline{1}-A, r, s) \leq \underline{1}-B$. Also, $\underline{1}-e I_{T, T^{\mathfrak{a}}}(A, r, s) \leq \underline{1}-B$. And then, $B \leq e I_{T, T^{\mathfrak{a}}}(A, r, s)$. Conversely, let $B \leq A, T(\underline{1}-B) \geq r$ and $T^{\mathfrak{a}}(\underline{1}-B) \leq s, r \in I_{0} \quad$ and $\quad s \in I_{1}$, such that $B \leq e I_{T, T^{\mathfrak{a}}}(A, r, s)$. Now $\quad \underline{1}-e I_{T, T^{\mathfrak{a}}}(A, r, s) \leq \underline{1}-B$, Thus $e C_{T, T^{\mathfrak{a}}}(\underline{1}-A, r, s) \leq \underline{1}-B$. That is, $\underline{1}-A$ is an (r, s)-gfec set, then A is an (r, s)-gfeo set.
Theorem 3.4 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be a dfts, $A \in I^{X}$, is (r, s)-gfeo set $r \in I_{0}$ and $s \in I_{1}$. If A is an (r, s) -gfec set, then
(i) $e C_{T, T^{\mathfrak{a}}}(A, r, s)-A$ does not contain any non-zero (r, s)-fc sets.
(ii) A is an (r, s)-fec iff $e C_{T, T^{\text {a }}}(A, r, s)-A$ is (r, s)-fc.
(iii) B is (r, s)-gfec set for each set $B \in I^{X}$ such that $A \leq B \leq e C_{T, T^{\mathfrak{a}}}(A, r, s)$.
(iv) For each (r, s)-fo set $B \in I^{X}$ such that $B \leq A, B$ is an (r, s)-gfec relative to A if and only if B is an (r, s)-gfec in I^{X}.
(v) For each (r, s)-feo set $B \in I^{X}$ such that $e C_{T, T^{\text {a }}}(A, r, s) \bar{q} B$ iff $A \bar{q} B$.

Proof. (i) Suppose that $T(\underline{1}-B) \geq r$ and $T^{\mathfrak{a}}(\underline{1}-B) \leq s, r \in I_{0} \quad$ and $s \in I_{1}$ such that $B \leq e C_{T, T^{\mathfrak{a}}}(A, r, s)-A$ whenever $A \in I^{X}$ is an (r, s)-gfec set. Since $\underline{1}-B$ is an (r, s)-fo set,

$$
\begin{aligned}
A \leq(\underline{1}-B) & \Rightarrow e C_{T, T^{\mathfrak{a}}}(A, r, s) \leq(\underline{1}-B) \\
& \Rightarrow B \leq\left(\underline{1}-e C_{T, T^{\mathfrak{a}}}(A, r, s)\right) \\
& \Rightarrow B \leq\left(\underline{1}-e C_{T, T^{\mathfrak{a}}}(A, r, s)\right) \wedge\left(e C_{T, T^{\mathfrak{a}}}(A, r, s)-A\right) \\
& =\underline{0}
\end{aligned}
$$

and hence $B=\underline{0}$ which is a contradiction. Then $e C_{T, T^{\mathfrak{a}}}(A, r s)-A$ does not contain any non-zero (r, s)-fc sets.
(ii) Let A be an (r, s)-gfec set. So, for each $r \in I_{0}$ and $s \in I_{1}$ if A is an (r, s)-fec set then, $e C_{T, T^{\text {ád }}}(A, r, s)-A=\underline{0}$ which is an (r, s)-fc set.
Conversely, suppose that $e C_{T, T^{\mathfrak{a}}}(A, r, s)-A$ is an $(r, s)-\mathrm{fc}$ set. Then by (i), $e C_{T, T^{\mathfrak{a}}}(A, r, s)-A$ does not contain any non-zero an (r, s)-fc set. But $e C_{T, T^{\mathfrak{a}}}(A, r, s)-A$ is an (r, s)-fc set, then $e C_{T, T^{\mathfrak{a}}}(A, r, s)-A=\underline{0} \Rightarrow A=e C_{T, T^{\mathfrak{a}}}(A, r, s)$. So, A is an (r, s)-fec set
(iii) Suppose that $T(C) \geq r$ and $T^{\mathfrak{a}}(C) \leq s$ where $r \in I_{0}$ and $s \in I_{1}$ such that $B \leq C$ and let A be an (r, s)-gfec set such that $A \leq C$. Then $e C_{T, T^{\mathfrak{d}}}(A, r, s) \leq C$. So, $e C_{T, T^{\mathfrak{a}}}(A, r, s)=e C_{T, T^{\mathfrak{a}}}(B, r, s)$, Therefore $e C_{T, T^{\mathfrak{a}}}(B, r, s) \leq C$. So, B is an (r, s)-gfec set.
(iv) Let A be an (r, s)-gfec and $T(A) \geq r$ and $T^{a}(A) \leq s$, where $r \in I_{0}$ and $s \in I_{1}$. Then $e C_{T, T^{\mathfrak{a}}}(A, r, s) \leq A$. But, $B \leq A$ so, $e C_{T, T^{\mathfrak{a}}}(B, r, s) \leq e C_{T, T^{\mathfrak{a}}}(A, r, s) \leq A$. Also, since B is an (r, s)-gfec relative to A, then $A \wedge e C_{T, T^{\mathfrak{a}}(A)}(B, r, s)=e C_{T, T^{\mathfrak{a}}}(B, r, s)$ so $e C_{T, T^{\text {à }}}(B, r, s)=e C_{T, T^{\mathfrak{a}}}(B, r, s) \leq A$.
Now, if B is an (r, s)-gfec relative to A and $T(C) \geq r$ and $T^{\mathfrak{a}}(C) \leq s$ where $r \in I_{0}$ and $s \in I_{1}$ such that $B \leq C$, then for each an (r, s)-fo set $C \wedge A, B=B \wedge A \leq C \wedge A$. Hence B is an (r, s)-gfec relative to $A, e C_{T, T^{\mathfrak{a}}}(B, r, s)=e C_{T, T^{\mathfrak{a}}}(A)(B, r, s) \leq(C \wedge A) \leq C$. Therefore, B is an (r, s)-gfec in I^{X}.
Conversely, let B be an (r, s)-gfec set in I^{X} and $T(C) \geq r$ and $T^{a}(C) \leq s$ whenever $C \leq A$ such that $B \leq A, r \in I_{0}$ and $s \in I_{1}$. Then for each an (r, s)-fo set $D \in I^{X}, C=D \cap A$. But we have, B is an (r, s)-gfec in set I^{X} such that $B \leq D$. $e C_{T, T^{\mathfrak{a}}}(B, r, s) \leq D \Rightarrow e C_{T, T^{\mathfrak{a}}}(B, r, s)=e C_{T, T^{\mathfrak{a}}}(B, r, s) \wedge A \leq D \wedge A=C$. That is, B is an (r, s)-gfec relative to A.
(v) Suppose B is an (r, s)-feo and $A \bar{q} B, r \in I_{0}$ and $s \in I_{1}$. Then $A \leq(\underline{1}-B)$. Since $(\underline{1}-B)$ is an (r, s) -fec set of I^{X} and A is an (r, s)-gfec set, then $e C_{T, T^{\mathrm{a}}}(A, r, s)^{\bar{q}} B$.
Conversely, let B be an (r, s)-fbc set of I^{X} such that $A \leq B, r \in I_{0}$ and $s \in I_{1}$. Then $A \bar{q}(\underline{1}-B)$. But $e C_{T, T^{\mathfrak{a}}}(A, r, s) \bar{q}(\underline{1}-B) \Rightarrow e C_{T, T^{\mathfrak{a}}}(A, r, s) \leq B$. Hence A is an (r, s)-gfec.
Proposition 3.1 Let $\left(X, T, T^{\mathfrak{a}}\right)$ be adfts, $A \in I^{X}, r \in I_{0}$ and $s \in I_{1}$.
(i) If A is an (r, s)-gfec and an (r, s)-feo set, then A is an (r, s)-fec set.
(ii) If A is an (r, s)-fo and an (r, s)-gfec, then $A \wedge B$ is an (r, s)-gfec set whenever $B \leq e C_{T, T^{\mathfrak{a}}}(A, r, s)$.
Proof. (i) Suppose A is an (r, s) -gfec and an (r, s) -feo set such that $A \leq B, r \in I_{0}$ and $s \in I_{1}$. Then
$e C_{T, T^{\text {a }}}(A, r, s) \leq A$. But we have, $A \leq e C_{T, T^{\mathfrak{a}}}(A, r, s)$. Then, $A=e C_{T, T^{\mathfrak{a}}}(A, r, s)$. Therefore, A is an (r, s) -fec set.
(ii) Suppose that A is an (r, s)-fo and an (r, s)-gfec set, $r \in I_{0}$ and $s \in I_{1}$. Then

$$
\begin{aligned}
e C_{T, T^{\mathfrak{a}}}(A, r, s) & \leq A \Rightarrow A \text { isan }(r, s) \text {-fec set } \\
& \Rightarrow A \wedge B \text { isan }(r, s) \text {-fec } \\
& \Rightarrow A \wedge B \text { isan }(r, s) \text {-gfec. }
\end{aligned}
$$

References

[1] S. E. Abbas, E. El-Sanousy, Several types of double fuzzy semiclosed sets, Journal of Fuzzy Math., 20 (2012), 89-102.
[2] K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (2) (1993), 131-142.
[3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, $\mathbf{8 8}$ (1997), 81-89.
[4] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian Journal for Science and Engineering, 33(2A) (2008), 269-282.
[5] J. G. Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorial redundancies of interval-valued sets, grey sets, vague sets, intervalued "intuitionistic" sets, "intuitionistic" fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445-484.
[6] E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Journal of Fuzzy Logic and Intelligent Systems, (Korea), 11(2) (2001), 161-165.
[7] S. K. Samanta and T. K Mondal, Intuitionistic gradation of opennes, Intuitionistic Fuzzy Topology, Busefal, 73 (1997), 8-17.
[8] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8(1) (2014), 141-148.
[9] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

