Fuzzy e-closed and Generalized Fuzzy e-closed Sets in Double Fuzzy Topological Spaces

¹P. Periyasamy, ²V. Chandrasekar, ³G. Saravanakumar and ⁴A. Vadivel ¹Department of Mathematics, Kandaswamy Kandar's College, P-velur, Tamil Nadu-638 182 ²Department of Mathematics, Kandaswamy Kandar's College, P-velur, Tamil Nadu-638 182, ³Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608 002 ⁴Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu-639 005

Abstract

The purpose of this paper is to introduce and study a new class of fuzzy sets called (r, s)-generalized fuzzy e-closed sets in double fuzzy topological spaces. Furthermore, the relationship between the new concepts are introduced and established with some interesting examples.

Keywords and phrases: Double fuzzy topology (r, s) -generalized fuzzy e -closed sets.

AMS (2000) subject classification: 54A40, 03E72, 45D05

1.Introduction

A progressive development of fuzzy sets [9] has been made to discover the fuzzy analogues of the crisp sets theory. On the other hand, the ideal of intuitionistic fuzzy sets was first introduced by Atanassov [2]. Later on, Coker [3] presented the notion of intuitionistic fuzzy topology. Samanta and Mondal [7], introduced and characterized the intuitionistic gradation of openness of fuzzy sets which is a generalization of smooth topology and the topology of intuitionistic fuzzy sets. The name ``intuitionistic" is disconnected in mathematics and applications. Gracia and Rodabaugh [5] conclued that they word under the name ``double". In 2008, Erdal Ekici [4] introduced e-open sets in general topology. In 2014, Seenivasan et. al [8] introduce fuzzy e-open sets in fuzzy topological spaces. As a generalization of the results in References [4, 8], we introduce and study (r,s)-fuzzy e-closed sets and (r,s)-generalized fuzzy e-closed (resp. (r,s)-generalized fuzzy e-closed) sets and and some other sets are introduced and established with some interesting couter examples.

2. Preliminaries

Throughout this paper, X will be a non-empty set, $I=[0,1], I_0=(0,1]$ and $I_1=[0,1)$. A fuzzy set A is quasi-coincident with a fuzzy set B (denoted by, AqB) iff there exists $x\in X$ such that A(x)+B(x)>1 and they are not quasi-coincident otherwise (denoted by, AqB). The family of all fuzzy sets on X is denoted by I^X . By Q and Q, we denote the smallest and the greatest fuzzy sets on X. For a fuzzy set $A\in I^X$, Q denotes its complement. All other notations are standard notations of fuzzy set theory. Now, we recall the following definitions which are useful in the sequel.

Definition 2.1 [7] A double fuzzy topology $(T, T^{\hat{a}})$ on X is a pair of maps $T, T^{\hat{a}}: I^X \to I$, which satisfies the following properties:

- (i) $T(A) \le 1 T^{\hat{a}}(A)$ for each $A \in I^X$.
- $\text{(ii)} \ \ T(A_{\!_1} \wedge A_2) \geq T(A_{\!_1}) \wedge T(A_2) \ \ \text{and} \ \ T^{^{\hat{\mathrm{a}}}}(A_{\!_1} \wedge A_2) \leq T^{^{\hat{\mathrm{a}}}}(A_{\!_1}) \vee T^{^{\hat{\mathrm{a}}}}(A_2), \ \ \text{for each} \ \ A_{\!_1}, A_2 \in I^X.$

(iii) $T(\bigvee_{i\in\Gamma}A_i)\geq \bigwedge_{i\in\Gamma}T(A_i)$ and $T^{\mathring{a}}(\bigvee_{i\in\Gamma}A_i)\leq \bigvee_{i\in\Gamma}T^{\mathring{a}}(A_i)$ for each $A_i\in I^X, i\in\Gamma$.

The triplet $(X,T,T^{\hat{a}})$ is called a double fuzzy topological space (briefly, dfts). A fuzzy set A is called an (r,s)-fuzzy open (briefly, (r,s)-fo) if $T(A) \ge r$ and $T^{\hat{a}}(A) \le s$. A fuzzy set A is called an (r,s)-fuzzy closed (briefly, (r,s)-fc) set iff 1-A is an (r,s)-fo set.

Theorem 2.1 [6] Let (X,T,T^{a}) be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $A \in I^{X}$ are defined by

$$C_{T,T^{\mathring{a}}}(A,r,s) = \bigwedge \{B \in I^X \mid A \leq B, T(\underline{1}-B) \geq r, T^{\mathring{a}}(\underline{1}-B) \leq s\}.$$

$$I_{TT^{\hat{a}}}(A,r,s) = \bigvee \{B \in I^X \mid A \ge B, T(B) \ge r, T^{\hat{a}}(B) \le s\}.$$

Where $r \in I_0$ and $s \in I_1$ such that $r + s \le 1$.

Definition 2.2 [1] Let $(X,T,T^{\hat{a}})$ be a dfts. For each $A \in I^X$, $r \in I_0$ and $s \in I_1$. A fuzzy set A is called an (r,s)-generalized fuzzy closed (briefly, (r,s)-gfc) if $C_{T,T^{\hat{a}}}(A,r,s) \leq B, A \leq B, T(B) \geq r$ and $T^{\hat{a}}(B) \leq s$. A is called an (r,s)-generalized fuzzy open (briefly (r,s)-gfo) iff 1-A is (r,s)-gfc set.

3. (r,s) fuzzy e-closed and (r,s)-generalized fuzzy e-closed sets

Definition 3.1 Let $(X,T,T^{\hat{a}})$ be a dfts. Then for each $A\in I^X$, $r\in I_0$ and $s\in I_1$. A fuzzy set A is called an (r,s)-fuzzy regular open (briefly, (r,s)-fro) if $A=I_{T,T^{\hat{a}}}(C_{T,T^{\hat{a}}}(A,r,s),r,s)$ and (r,s)-fuzzy regular closed (briefly, (r,s)-fro) if $A=C_{T,T^{\hat{a}}}(I_{T,T^{\hat{a}}}(A,r,s),r,s)$.

Definition 3.2 Let $(X,T,T^{\hat{a}})$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, we define operators $\delta C_{T,T^{\hat{a}}}$ and $\delta I_{T,T^{\hat{a}}}: I^X \times I_0 \times I_1 \to I^X$ as follows: $\delta C_{T,T^{\hat{a}}}(A,r,s) = \bigwedge \{B \in I^X : A \leq B, B \text{ is } (r,s) - frc\}$ and $\delta I_{T,T^{\hat{a}}}(A,r,s) = \bigvee \{B \in I^X : B \leq A, B \text{ is } (r,s) - fro\}.$

Definition 3.3 Let $(X,T,T^{\mathring{a}})$ be a dfts. Then for each $A \in I^{X}$, $r \in I_{0}$ and $s \in I_{1}$: a fuzzy set A is called an (i) (r,s)-fuzzy δ semiopen (briefly, (r,s)- $f\delta so$) if $A \leq C_{T,T^{\mathring{a}}}(\delta I_{T,T^{\mathring{a}}}(A,r,s),r,s)$ and (r,s)-fuzzy δ semi closed (briefly, (r,s)- $f\delta sc$) if $A \geq I_{T,T^{\mathring{a}}}(\delta C_{T,T^{\mathring{a}}}(A,r,s),r,s)$.

- $\text{(ii)} \quad (r,s) \text{-fuzzy} \quad \delta \quad \text{pre open (briefly,} \quad (r,s) \text{-} \\ f \delta po \text{) if} \quad A \leq I_{T,T^{\hat{\mathbf{a}}}} \left(\delta C_{T,T^{\hat{\mathbf{a}}}} \left(A,r,s \right),r,s \right) \quad \text{and} \quad (r,s) \text{-fuzzy}$ $\delta \quad \text{pre closed (briefly,} \quad (r,s) \text{-} \\ f \delta pc \text{) if} \quad A \geq C_{T,T^{\hat{\mathbf{a}}}} \left(\delta I_{T,T^{\hat{\mathbf{a}}}} \quad (A,r,s),r,s \right).$
- $\begin{array}{lll} \text{(iii)} & (r,s) \text{-fuzzy} & \beta & \text{open (briefly,} & (r,s) \text{-} f \beta o \end{array} \text{) if} & A \leq C_{_{T,T^{\mathring{a}}}} \left(I_{_{T,T^{\mathring{a}}}} & (C_{_{T,T^{\mathring{a}}}} (A,r,s), -r,s)r,s \right) & \text{and} \\ (r,s) \text{-fuzzy} & \beta & \text{closed (briefly,} & (r,s) \text{-} f \beta c \end{array} \text{) if} & A \geq I_{_{T,T^{\mathring{a}}}} \left(C_{_{T,T^{\mathring{a}}}} & (I_{_{T,T^{\mathring{a}}}} (A,r,s),r,s)r,s \right). \end{aligned}$
- $\begin{aligned} &\text{(iv)}\quad (r,s)\text{-fuzzy}\quad e\text{-open (briefly,}\quad (r,s)\text{-}\textit{feo}\text{) if}\\ A &\leq C_{_{T,T^{\mathring{a}}}}\left(\delta I_{_{T,T^{\mathring{a}}}}\left(A,r,s\right),r,s\right) \vee I_{_{T,T^{\mathring{a}}}}\left(\delta C_{_{T,T^{\mathring{a}}}}\left(A,r,s\right),r,s\right) \quad \text{and} \quad (r,s)\text{-fuzzy}\quad e\text{-closed (briefly,}\quad (r,s)\text{-}\textit{fec}\text{) if}\\ A &\geq I_{_{T,T^{\mathring{a}}}}\left(\delta C_{_{T,T^{\mathring{a}}}}\left(A,r,s\right),r,s\right) \wedge C_{_{T,T^{\mathring{a}}}}\left(\delta I_{_{T,T^{\mathring{a}}}}\left(A,r,s\right),r,s\right). \end{aligned}$

$$eI_{_{T\,T^{\hat{a}}}}$$
 (resp. $\delta SI_{_{T\,T^{\hat{a}}}}$, $\delta PI_{_{T\,T^{\hat{a}}}}$ and $\beta I_{_{T\,T^{\hat{a}}}}$) (A,r,s) =

 $\sqrt{\{B \in I^X : B \le A, B \text{ is}(r,s) - feo \text{ (resp. } f \delta so, f \delta po \text{ and } f \beta o)\}}.$

Definition 3.5 Let $(X,T,T^{\mathring{a}})$ be a dfts, $A\in I^{X}, r\in I_{0}$ and $s\in I_{1}$, A is called an (r,s)-fuzzy $e\cdot Q$ -neighborhood of $x_{t}\in P_{t}(X)$ if there exists an (r,s)-feo set $B\in I^{X}$ such that $x_{t}qB$ and $B\leq A$. The family of all (r,s)-fuzzy $e\cdot Q$ -neighborhood of x_{t} denoted by $e\cdot Q(x_{t},r,s)$.

Theorem 3.1 Let $(X,T,T^{\mathring{a}})$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, the operator $eC_{T,T^{\mathring{a}}}$ satisfies the following statements:

(i)
$$eC_{_{T,T^{\mathring{a}}}}(\underline{0},r,s)=\underline{0}$$
, $eC_{_{T,T^{\mathring{a}}}}(\underline{1},r,s)=\underline{1}$.

(ii)
$$A \leq eC_{TT^{\mathring{a}}}(A,r,s)$$
.

(iii) If
$$A \leq B$$
, then $eC_{_{T\,T^{\mathring{a}}}}(A,r,s) \leq eC_{_{T\,T^{\mathring{a}}}}(B,r,s)$.

(iv) If
$$A$$
 is an (r,s) -fec, then $A = eC_{TT^{\hat{a}}}(A,r,s)$.

(v) If
$$A$$
 is an (r,s) -feo, then BqA iff $BqeC_{_{T}T^{\mathring{a}}}(A,r,s)$.

(vi)
$$eC_{T,T^{\hat{a}}}(eC_{T,T^{\hat{a}}}(A,r,s),r,s) = eC_{T,T^{\hat{a}}}(A,r,s).$$

$$\text{(vii)} \quad eC_{_{T,T^{\hat{\mathbf{d}}}}}(A,r,s) \vee eC_{_{T,T^{\hat{\mathbf{d}}}}}(B,r,s) \leq eC_{_{T,T^{\hat{\mathbf{d}}}}}(A \vee B,r,s).$$

(viii)
$$eC_{TT^{\hat{a}}}(A,r,s) \wedge eC_{TT^{\hat{a}}}(B,r,s) \ge eC_{TT^{\hat{a}}}(A \wedge B,r,s).$$

Proof. (i), (ii), (iii) and (iv) are proved easily.

- (v) Let BqA and B is an (r,s)-feo set, then $A \leq \underline{1} B$. But we have, BqA iff $BqeC_{_{T,T^{\mathring{a}}}}(A,r,s)$ and $eC_{_{T,T^{\mathring{a}}}}(A,r,s) \leq eC_{_{T,T^{\mathring{a}}}}(\underline{1} B,r,s) = \underline{1} B$, so $BqeC_{_{T,T^{\mathring{a}}}}(A,r,s)$, which is contradiction. Then BqA iff $BqeC_{_{T,T^{\mathring{a}}}}(A,r,s)$.
- (vi) Let x_t be a fuzzy point such that x_t ' $eC_{T,T^{\hat{a}}}(A,r,s)$. Then there is an (r,s)-fuzzy e-Q-neighborhood B of x_t such that BqA. But by (v), we have an (r,s)-fuzzy e-Q-neighborhood B of x_t such that $BqEC_{T,T^{\hat{a}}}(A,r,s)$. Also, $x_t \not \subseteq eC_{T,T^{\hat{a}}}(eC_{T,T^{\hat{a}}}(A,r,s),r,s)$. Then $eC_{T,T^{\hat{a}}}(eC_{T,T^{\hat{a}}}(A,r,s),r,s) \le eC_{T,T^{\hat{a}}}(A,r,s)$. But we have, $eC_{T,T^{\hat{a}}}(eC_{T,T^{\hat{a}}}(A,r,s),r,s) \ge eC_{T,T^{\hat{a}}}(A,r,s)$. Therefore $eC_{T,T^{\hat{a}}}(eC_{T,T^{\hat{a}}}(A,r,s),r,s) = eC_{T,T^{\hat{a}}}(A,r,s)$.

(vii) and (viii) are obvious.

Similarly the other operators (i.e) $\delta SC_{_{T,T^{\mathring{a}}}}$, $\delta PC_{_{T,T^{\mathring{a}}}}$ and $\beta C_{_{T,T^{\mathring{a}}}}$ satisfies the above conditions.

Theorem 3.2 Let $(X,T,T^{\mathring{a}})$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, the operator $eI_{T,T^{\mathring{a}}}$ satisfies the following statements:

$$\text{(i)} \quad eI_{_{T,T^{\hat{a}}}}\left(\underline{1}-A,r,s\right) = \underline{1} - eC_{_{T,T^{\hat{a}}}}\left(A,r,s\right), \quad eC_{_{T,T^{\hat{a}}}}\left(\underline{1}-A,r,s\right) = \underline{1} - eI_{_{T,T^{\hat{a}}}}\left(A,r,s\right).$$

(ii)
$$eI_{TT^{\hat{a}}}(\underline{0},r,s) = \underline{0}$$
, $eI_{TT^{\hat{a}}}(\underline{1},r,s) = \underline{1}$.

(iii)
$$eI_{TT^{\mathring{a}}}(A,r,s) \leq A$$
.

(iv) If
$$A$$
 is an (r,s) -feo, then $A=eI_{r,r^{\hat{a}}}(A,r,s)$.

(v) If
$$A \leq B$$
, then $eI_{TT^{\hat{a}}}(A,r,s) \leq eI_{TT^{\hat{a}}}(B,r,s)$.

$$\text{(vi)} \quad eI_{_{T,T^{\mathring{\mathbf{A}}}}}\left(eI_{_{T,T^{\mathring{\mathbf{A}}}}}\left(A,r,s\right),r,s\right) = eI_{_{T,T^{\mathring{\mathbf{A}}}}}\left(A,r,s\right).$$

$$\text{(vii)} \quad eI_{_{T,T^{\mathring{\mathbf{a}}}}}\left(A\vee B,r,s\right) \geq eI_{_{T,T^{\mathring{\mathbf{a}}}}}\left(A,r,s\right) \vee eI_{_{T,T^{\mathring{\mathbf{a}}}}}\left(B,r,s\right).$$

$$\text{(viii)} \quad eI_{_{T\ T^{\mathring{\mathbf{a}}}}}\left(A \vee B, r, s\right) \leq eI_{_{T\ T^{\mathring{\mathbf{a}}}}}\left(A, r, s\right) \wedge eI_{_{T\ T^{\mathring{\mathbf{a}}}}}\left(B, r, s\right).$$

Proof. It is similar to Theorem 3.1.

Similarly the other operators (i.e) $\delta SI_{_{T\,T^{\hat{a}}}}$, $\delta PI_{_{T\,T^{\hat{a}}}}$ and $\beta I_{_{T\,T^{\hat{a}}}}$ satisfies the above conditions.

Definition 3.6 Let $(X,T,T^{\mathring{a}})$ be a dfts. Then for each $A \in I^{X}$, $r \in I_{0}$ and $s \in I_{1}$: a fuzzy set A is called

- (i) (r,s) -generalized fuzzy δ semiopen (briefly, (r,s) -gf δs o) if $B \leq \delta SI_{T,T^{\hat{a}}}(A,r,s)$ whenever $B \leq A$ and $T(1-B) \geq r, T^{\hat{a}}(1-B) \leq s$.
- (ii) (r,s) -generalized fuzzy δ preopen (briefly, (r,s) -gf δp o) if $B \leq \delta PI_{T,T^{\mathring{a}}}(A,r,s)$ whenever $B \leq A$ and $T(1-B) \geq r, T^{\mathring{a}}(1-B) \leq s$.
- (iii) (r,s) -generalized fuzzy β -open (briefly, (r,s) -gf β o) if $B \leq \beta I_{T,T^{\hat{a}}}(A,r,s)$ whenever $B \leq A$ and $T(1-B) \geq r, T^{\hat{a}}(1-B) \leq s$.
- (iv) (r,s) -generalized fuzzy e -open (briefly, (r,s) -gf e o) if $B \le eI_{T,T^{\hat{a}}}(A,r,s)$ whenever $B \le A$ and $T(1-B) \ge r, T^{\hat{a}}(1-B) \le s$.
- (v) (r,s) -generalized fuzzy δ semiclosed (briefly, (r,s) -gf δs c) if $\delta SC_{T,T^{\mathring{a}}}$ $(A,r,s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathring{a}}(B) \leq s$.
- (vi) (r,s) -generalized fuzzy δ preclosed (briefly, (r,s) -gf δp c) if $\delta PC_{T,T^{\mathring{a}}}$ $(A,r,s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathring{a}}(B) \leq s$.
- (vii) (r,s) -generalized fuzzy β -closed (briefly, (r,s) -gf β c) if $\beta C_{T,T^{\mathring{a}}}(A,r,s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\mathring{a}}(B) \leq s$.
- (viii) (r,s)-generalized fuzzy e-closed (briefly, (r,s)-gf e c) if $eC_{T,T^{\hat{a}}}(A,r,s) \leq B$ whenever $A \leq B$ and $T(B) \geq r, T^{\hat{a}}(B) \leq s$.

Example 3.1 Let $X = \{x, y\}$. Defined B, C, D and E by B(x) = (0.3), B(y) = (0.4); C(x) = (0.4), C(y) = (0.5); D(x) = (0.8), D(y) = (0.8); E(x) = (0.4), E(y) = (0.6); F(x) = 0.4, F(y) = 0.4.

$$T(A) = \begin{cases} 1, & \text{if } A \in \{\underline{0},\underline{1}\}, \\ \frac{1}{2}, & \text{if } A \in \{B,C\}, \ T^{\hat{a}}(A) = \begin{cases} 0, & \text{if } A \in \{\underline{0},\underline{1}\}, \\ \frac{1}{2}, & \text{if } A \in \{B,C\}, \end{cases} \\ 0, & \text{otherwise.} \end{cases}$$

- (i) C is an $(\frac{1}{2}, \frac{1}{2})$ -f δ sc (resp. $(\frac{1}{2}, \frac{1}{2})$ -gf δ sc) but not an $(\frac{1}{2}, \frac{1}{2})$ -fc (resp. $(\frac{1}{2}, \frac{1}{2})$ -gfc).
- (ii) C is an $(\frac{1}{2}, \frac{1}{2})$ -fec (resp. $(\frac{1}{2}, \frac{1}{2})$ -gfec) but not an $(\frac{1}{2}, \frac{1}{2})$ -f δ pc (resp. $(\frac{1}{2}, \frac{1}{2})$ -gf δ pc).
- (iii) D is an $(\frac{1}{2}, \frac{1}{2})$ -f δ pc, $(\frac{1}{2}, \frac{1}{2})$ -e c but not an $(\frac{1}{2}, \frac{1}{2})$ -fc, $(\frac{1}{2}, \frac{1}{2})$ - δ sc.
- (iv) E is an $(\frac{1}{2}, \frac{1}{2})$ -f β c but not an $(\frac{1}{2}, \frac{1}{2})$ -fec.
- (v) F is an $(\frac{1}{2}, \frac{1}{2})$ -gf e c, $(\frac{1}{2}, \frac{1}{2})$ -g δ pc but not an $(\frac{1}{2}, \frac{1}{2})$ -gf δ sc, $(\frac{1}{2}, \frac{1}{2})$ -gfc.

3.2 Defined G,H,I,J,KExample Let $X = \{x, y\}$ and Lby G(x) = (0.1), G(y) = (0.3); H(x) = (0.3), H(y) = (0.2); I(x) = (0.1), I(y) = (0.2);

$$J(x) = (0.3), J(y) = (0.3); K(x) = 0.7,$$

$$K(y) = 0.6$$
; $L(x) = (0.4)$, $L(y) = (0.3)$.

$$T(A) = \begin{cases} 1, & \text{if } A \in \{\underline{0},\underline{1}\}, \\ \\ \frac{1}{2}, & \text{if } A \in \{G,H,I,J,K\}, \\ 0, & \text{otherwise.} \end{cases}$$

$$T(A) = \begin{cases} \frac{1}{2}, & \text{if } A \in \{G, H, I, J, K\}, \\ 0, & \text{otherwise.} \end{cases}$$

$$T^{\hat{a}}(A) = \begin{cases} 0, & \text{if } A \in \{0, 1\}, \\ \frac{1}{2}, & \text{if } A \in \{G, H, I, J, K\}, \\ 1, & \text{otherwise.} \end{cases}$$

(i) L is an $(\frac{1}{2}, \frac{1}{2})$ -gf β c but not an $(\frac{1}{2}, \frac{1}{2})$ -gf e sc.

Theorem 3.3 Let (X,T,T^{a}) be a dfts, $A \in I^{X}$, is (r,s)-gfeo set $r \in I_{0}$ and $s \in I_{1}$, if and only if $B \leq eI_{T,T^{\mathring{a}}}(A,r,s) \quad \text{whenever} \quad B \leq A, \quad T(\underline{1}-B) \geq r \quad \text{and} \quad T^{\mathring{a}}(\underline{1}-B) \leq s.$

Proof. Suppose that A is an (r,s)-gfeo set in I^X , and let $T(\underline{1}-B) \ge r$ and $T^{a}(\underline{1}-B) \le s$ such that $B \leq A$. By the definition, $\underline{1} - A$ is an (r,s) -gfec set in I^X . So, $eC_{_{T,T^{\overset{\circ}{A}}}}(\underline{1} - A, r, s) \leq \underline{1} - B$. Also, $\underline{1} - eI_{_{T,T^{\hat{a}}}}(A,r,s) \leq \underline{1} - B. \quad \text{ And } \quad \text{then, } \quad B \leq eI_{_{T,T^{\hat{a}}}}(A,r,s). \quad \text{ Conversely, } \quad \text{let} \quad B \leq A, T(\underline{1} - B) \geq r$ $T^{\mathring{\mathrm{a}}}(\underline{1}-B) \leq s, r \in I_0 \quad \text{ and } \quad s \in I_1 \text{ , such that } \quad B \leq eI_{_{T,T^{\mathring{\mathrm{a}}}}}(A,r,s). \quad \text{Now} \quad \underline{1}-eI_{_{T,T^{\mathring{\mathrm{a}}}}}(A,r,s) \leq \underline{1}-B, \quad \text{Thus}$ $eC_{_{T,T^{\mathring{a}}}}(\underline{1}-A,r,s)\leq \underline{1}-B.$ That is, $\underline{1}-A$ is an (r,s) -gfec set, then A is an (r,s) -gfeo set.

Theorem 3.4 Let (X,T,T^{a}) be a dfts, $A \in I^{X}$, is (r,s)-gfeo set $r \in I_{0}$ and $s \in I_{1}$. If A is an (r,s)-gfec set, then

- (i) $eC_{r,r^{\mathring{a}}}(A,r,s)-A$ does not contain any non-zero (r,s) -fc sets.
- (ii) A is an (r,s) -fec iff $eC_{r,r^{\hat{a}}}(A,r,s)-A$ is (r,s) -fc.
- (iii) B is (r,s)-gfec set for each set $B \in I^X$ such that $A \le B \le eC_{T,T^{\hat{a}}}(A,r,s)$.
- (iv) For each (r,s)-fo set $B \in I^X$ such that $B \le A$, B is an (r,s)-gfec relative to A if and only if B is an (r,s)-gfec in I^X .
 - (v) For each (r,s) -feo set $B \in I^X$ such that $eC_{TT^{\mathring{a}}}(A,r,s)\overline{q}B$ iff $A\overline{q}B$.

 $T^{\mathring{a}}(\underline{1}-B) \leq s, r \in I_0$ (i) Suppose that $T(1-B) \ge r$ and that $B \le eC_{r,r^{\frac{1}{a}}}(A,r,s) - A$ whenever $A \in I^X$ is an (r,s)-gfec set. Since $\underline{1} - B$ is an (r,s)-fo set,

$$A \leq (\underline{1} - B) \Rightarrow eC_{T,T^{\hat{a}}}(A, r, s) \leq (\underline{1} - B)$$

$$\Rightarrow B \leq (\underline{1} - eC_{T,T^{\hat{a}}}(A, r, s))$$

$$\Rightarrow B \leq (\underline{1} - eC_{T,T^{\hat{a}}}(A, r, s)) \wedge (eC_{T,T^{\hat{a}}}(A, r, s) - A)$$

$$= 0$$

and hence $B=\underline{0}$ which is a contradiction. Then $eC_{_{T},r^{\mathring{a}}}(A,rs)-A$ does not contain any non-zero (r,s)-fc sets.

(ii) Let A be an (r,s)-gfec set. So, for each $r \in I_0$ and $s \in I_1$ if A is an (r,s)-fec set then, $eC_{r,r^{\hat{a}}}(A,r,s)-A=\underline{0}$ which is an (r,s)-fc set.

Conversely, suppose that $eC_{r,r^{\hat{a}}}(A,r,s)-A$ is an (r,s)-fc set. Then by (i), $eC_{r,r^{\hat{a}}}(A,r,s)-A$ does not contain any non-zero an (r,s) -fc set. But $eC_{r,r^{\hat{a}}}(A,r,s)-A$ is an (r,s) -fc set, then $eC_{_{T}T^{\mathring{a}}}(A,r,s)-A=\underline{0} \Rightarrow A=eC_{_{T}T^{\mathring{a}}}(A,r,s).$ So, A is an (r,s)-fec set

- (iii) Suppose that $T(C) \ge r$ and $T^{a}(C) \le s$ where $r \in I_0$ and $s \in I_1$ such that $B \le C$ and let A be an (r,s) -gfec set such that $A \leq C$. Then $eC_{TT^{\mathring{a}}}(A,r,s) \leq C$. So, $eC_{TT^{\mathring{a}}}(A,r,s) = eC_{TT^{\mathring{a}}}(B,r,s)$, Therefore $eC_{_{\tau}}{_{_{\tau}\mathring{a}}}(B,r,s) \leq C$. So, B is an (r,s) -gfec set.
- (iv) Let A be an (r,s)-gfec and $T(A) \ge r$ and $T^{\mathring{a}}(A) \le s$, where $r \in I_0$ and $s \in I_1$. Then $eC_{_{T,T^{\mathring{a}}}}(A,r,s) \leq A$. But, $B \leq A$ so, $eC_{_{T,T^{\mathring{a}}}}(B,r,s) \leq eC_{_{T,T^{\mathring{a}}}}(A,r,s) \leq A$. Also, since B is an (r,s)-gfec relative to A, then $A \wedge eC_{T,T^{\hat{a}}}(A)(B,r,s) = eC_{T,T^{\hat{a}}}(B,r,s)$ so $eC_{T,T^{\hat{a}}}(B,r,s) = eC_{T,T^{\hat{a}}}(B,r,s) \leq A$.

Now, if B is an (r,s)-gfec relative to A and $T(C) \ge r$ and $T^{a}(C) \le s$ where $r \in I_0$ and $s \in I_1$ such that $B \le C$, then for each an (r,s)-fo set $C \land A$, $B = B \land A \le C \land A$. Hence B is an (r,s)-gfec relative to $A, eC_{TT^{\mathring{a}}}(B, r, s) = eC_{TT^{\mathring{a}}(A)}(B, r, s) \le (C \land A) \le C$. Therefore, B is an (r, s)-gfec in I^X .

Conversely, let B be an (r,s)-gfec set in I^X and $T(C) \ge r$ and $T^{\hat{a}}(C) \le s$ whenever $C \le A$ such that $B \le A, r \in I_0$ and $s \in I_1$. Then for each an (r,s)-fo set $D \in I^X, C = D \cap A$. But we have, B is an such (r,s)that $B \leq D$. $eC_{_{T,T^{\hat{a}}}}(B,r,s) \leq D \Rightarrow eC_{_{T,T^{\hat{a}}}}(B,r,s) = eC_{_{T,T^{\hat{a}}}}(B,r,s) \land A \leq D \land A = C$. That is, B is an (r,s)-gfec relative to *A*.

(v) Suppose B is an (r,s)-feo and $AqB, r \in I_0$ and $s \in I_1$. Then $A \le (\underline{1} - B)$. Since $(\underline{1} - B)$ is an (r,s)-fec set of I^X and A is an (r,s)-gfec set, then $eC_{r,r^3}(A,r,s)\overline{q}B$.

Conversely, let B be an (r,s)-fbc set of I^X such that $A \le B, r \in I_0$ and $s \in I_1$. Then Aq(1-B). But $eC_{_{T,T^{\mathring{a}}}}(A,r,s)q(\underline{1}-B) \Longrightarrow eC_{_{T,T^{\mathring{a}}}}(A,r,s) \leq B$. Hence A is an (r,s)-gfec.

Proposition 3.1 Let (X,T,T^{a}) be a dfts, $A \in I^{X}$, $r \in I_{0}$ and $s \in I_{1}$.

- (i) If A is an (r,s)-gfec and an (r,s)-feo set, then A is an (r,s)-fec set.
- (ii) If A is an (r,s) -fo and an (r,s) -gfec, then $A \wedge B$ is an (r,s) -gfec set whenever $B \leq eC_{TT^{\mathring{a}}}(A, r, s)$.

Proof. (i) Suppose A is an (r,s)-gfec and an (r,s)-feo set such that $A \leq B, r \in I_0$ and $s \in I_1$. Then

 $eC_{_{T,T^{\mathring{a}}}}(A,r,s) \leq A. \quad \text{But we have,} \quad A \leq eC_{_{T,T^{\mathring{a}}}}(A,r,s). \quad \text{Then,} \quad A = eC_{_{T,T^{\mathring{a}}}}(A,r,s) \,. \quad \text{Therefore,} \quad A \quad \text{is an} \quad (r,s) \leq A.$

(ii) Suppose that A is an (r,s)-fo and an (r,s)-gfec set, $r \in I_0$ and $s \in I_1$. Then $eC_{TT^{\hat{a}}}(A,r,s) \le A \Longrightarrow A \operatorname{isan}(r,s)$ -fec set $\Rightarrow A \land B \text{ isan } (r, s) \text{-fec}$ $\Rightarrow A \land B \text{ isan } (r, s) \text{-gfec.}$

References

- [1] S. E. Abbas, E. El-Sanousy, Several types of double fuzzy semiclosed sets, Journal of Fuzzy Math., (2012), 89-102.
- [2] K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (2) (1993), 131-142.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 81-89.
- [4] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian Journal for Science and Engineering, **33**(2A) (2008), 269-282.
- [5] J. G. Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorial redundancies of interval-valued sets, grey sets, vaque sets, intervalued "intuitionistic" sets, "intuitionistic" fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445-484.
- [6] E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Journal of Fuzzy Logic and Intelligent Systems, (Korea), **11**(2) (2001), 161-165.
- [7] S. K. Samanta and T. K Mondal, Intuitionistic gradation of opennes, Intuitionistic Fuzzy Topology, Busefal, **73** (1997), 8-17.
- [8] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, **8**(1) (2014), 141-148.
- [9] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.