$\tau_{\tau_{j}, M^{*}-\sigma_{k}}$-continuous Maps

VADIVEL1, *R. V. M. RANGARAJAN2, † and R DHARANI3, \ddagger
${ }^{1 \& 3}$ Post and Research Department of Mathematics, Government Arts College (Autonomous), Karur-639 005, India.
Department of Mathematics, Annamalai University, Annamali Nagar-608 002, India.
Professor and Head, Department of Mathematics, K.S.R College of Engineering, Tiruchengode

Abstract

The aim of this paper is to introduce and investigate the concept of $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-continuous maps in a bitopological space. Moreover we investigate the relationship between $\tau_{i} \tau_{j}-\delta-\sigma_{k}$ continuous, $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-continuous, $\tau_{i} \tau_{j}-a-\sigma_{k}$-continuous, $\tau_{i} \tau_{j}-e^{*}-\sigma_{k}$-continuous and respective some other closed mappings..

Keywords and phrases: $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-continuity, $\tau_{i} \tau_{j}-\delta-\sigma_{k}$ - continuous, $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$ continuous, $\tau_{i} \tau_{j}-a-\sigma_{k}$-continuous, $\tau_{i} \tau_{j}-e^{*}-\sigma_{k}$-continuous.
AMS (2000) subject classification: 54E55.

Introduction and Preliminaries

Levine in 1963 initiated a new types of open set called semiopen set [10]. A subset A of a space (X, τ) is called regular open (resp., regular closed) [15] if $A=\operatorname{int}(\operatorname{cl}(A)$) (resp., $A=\operatorname{cl}(\operatorname{int}(A))$. The delta interior [4] of a subset A of (X, τ) is the union of all regular open sets of X contained in A and is denoted by $\operatorname{\delta int}(A)$. A subset A of a space (X, τ) is called δ-open [12] if $A=\operatorname{sint}(A)$. The complement of δ-open set is called δ-closed. Alternatively, a set A of (X, τ) is called δ-closed [4] if $A=\operatorname{\delta cl}(A)$, where $\delta c l(A)=\{x \in X: A \cap \operatorname{int}(c l(U)) \neq \phi, U \in \tau$ and $x \in U\}$. A subset A of a space X is called θ-open [1] if $A=\operatorname{\theta int}(A)$, where $\operatorname{\theta int}(A)=\bigcup\left\{\operatorname{int}(U): U \subseteq A, U \in \tau^{c}\right\}$, and a subset A is called θ-semiopen [2] (resp., δ-preopen [12] , e-open[5], M-open [6], M^{*}-open[3], δ -semiopen [11] , δ-open[15], e^{*}-open [5] and a-open[5]) if $A \subseteq \operatorname{cl}(\operatorname{\theta int}(A))$ (resp., $A \subseteq \operatorname{int}(\delta c l(A)) \quad, \quad A \subseteq c l(\operatorname{\delta int}(A)) \cup \operatorname{int}(\delta c l(A)) \quad$ and $\quad A \subseteq c l(\theta i n t(A)) \cup \operatorname{int}(\delta c l(A)))$, $A \subseteq \operatorname{int}(c l(\operatorname{\theta int}(A))) \quad, \quad A \subseteq \operatorname{cl}(\operatorname{Sint}(A)) \quad, \quad A=\operatorname{Sint}(A) \quad, \quad A \subseteq \operatorname{cl}(\operatorname{int}(\delta c l(A))) \quad$ and $A \subseteq \operatorname{int}(c l(A)(\operatorname{sint}(A))$, where $\operatorname{int}(), \quad c l(), \operatorname{\theta int}(), \quad \operatorname{dint}()$ and $\delta c l()$ are the interior, closure, θ-interior, δ-interior and δ-closure operations, respectively. The notion of bitopological spaces (in short, Bts's) was first introduced by Kelly[8].
Through out this paper, let $\left(X, \tau_{1}, \tau_{2}\right)$ or simply X be a Bts and $i, j \in\{1,2\}$. A subset S of a Bts X is said to be $\tau_{1,2}$-open [9] if $S=A \cup B$ where $A \in \tau_{1}$ and $B \in \tau_{2}$. A subset S of X is said to be $\tau_{1,2}$-closed if the complement of S is $\tau_{1,2}$-open. and $\tau_{1,2}$-clopen if S is both $\tau_{1,2}$-open and $\tau_{1,2}$-closed. For a subset A of X, the interior (resp., closure) of A with respect to τ_{i} will be denoted by $\operatorname{int}_{i}(A)$ (resp., $c l_{i}(A)$) for $i=1,2$. In this paper, we introduce and investigate the concept of $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-continuous maps in a bitopological spaces. In addition, several properties of these notions and connections to several other known ones are provided.

Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a Bts. A subset A of X is called $\tau_{i} \tau_{j}-M$-open [13] (briefly, $\left.\tau_{i} \tau_{j}-M-\mathrm{o}\right)$ if $A \subseteq \operatorname{cl}_{j}\left(\operatorname{Vint}_{i}(A)\right) \cup \operatorname{int}_{i}\left(\delta c l_{j}(A)\right)$ and A is $\tau_{i} \tau_{j}-M$ closed (in short, $\tau_{i} \tau_{j}-M-\mathrm{c}$) if $X \backslash A$ is $\tau_{i} \tau_{j}-M-\mathrm{o}$. A is pairwise M-open if it is both $\tau_{i} \tau_{j}-M-\mathrm{o}$ and $\tau_{j} \tau_{i}-M-\mathrm{o}$. A subset A of X is called $\tau_{i} \tau_{j}-M^{*}$-open [13] (briefly, $\left.\tau_{i} \tau_{j}-M^{*}-o\right)$ if $A \subseteq \operatorname{int}_{i}\left(\operatorname{cl}_{j}\left(\operatorname{\theta int}_{i}(A)\right)\right.$) and A is $\tau_{i} \tau_{j}-M^{*}$ - closed (briefly, $\tau_{i} \tau_{j}-M^{*}-c$) if X / A is $\tau_{i} \tau_{j}-M^{*}-o . A$ is pairwise $M^{*}-o$ if it is both $\tau_{1} \tau_{2}-M^{*}-o$ and $\tau_{2} \tau_{1}-M^{*}-o$.
Clearly A is $\tau_{i} \tau_{j}-M^{*}-\mathrm{c}$ iff $A \supseteq c l_{j}\left(\right.$ int $\left._{i}\left(\theta c l_{j}(A)\right)\right)$. We denote the family of all $\tau_{i} \tau_{j}-M^{*}-c$ sets in a Bts $\left(X, \tau_{1}, \tau_{2}\right)$ by $D_{M^{*} C}\left(\tau_{i}, \tau_{j}\right)$. A subset A of X is called $\tau_{i} \tau_{j}-\theta$-semiopen [13] (briefly, $\tau_{i} \tau_{j}-\theta$-so) if $A \subseteq c l_{j}\left(\theta i n t_{i}(A)\right), ~ \tau_{i} \tau_{j}-\delta$-preopen [13] (briefly, $\tau_{i} \tau_{j}-\delta$-po) if $A \subseteq \operatorname{int}_{i}\left(\delta c l_{j}(A)\right), \quad \tau_{i} \tau_{j}-e$-open if $A \subseteq c l_{j}\left(\operatorname{Sint}_{i}(A)\right) \cup \operatorname{int}_{i}\left(\delta c l_{j}(A)\right), \tau_{i} \tau_{j}-\delta$-semi open [13] (briefly, $\tau_{i} \tau_{j}-\delta-s o$) if $A \subseteq c l_{j}\left(\operatorname{Sint}_{i}(A)\right)$, $\tau_{i} \tau_{j}-\delta$-open [13] (briefly, $\tau_{i} \tau_{j}-\delta-o$) if $A=\operatorname{Sint}_{i}(A), \tau_{i} \tau_{j}-e^{*}$-open [13] (briefly, $\left.\tau_{i} \tau_{j}-e^{*}-o\right)$ if $A \subseteq c l_{j}\left(\right.$ int $\left._{i}\left(\delta c l_{j}(A)\right)\right), \quad \tau_{i} \tau_{j}-a$-open [13] (briefly, $\tau_{i} \tau_{j}-a-o$) if $A \subseteq \operatorname{int}_{i}\left(c l_{j}(A)\left(\operatorname{Sint}_{i}(A)\right)\right.$.

Definition 1.1 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called [14] $\tau_{i} \tau_{j}-\theta-\sigma_{k}$-continous (briefly, $\left.\tau_{i} \tau_{j}-\theta-\sigma_{k}-c t s\right)$ if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-\theta-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$; $\tau_{i} \tau_{j}-\theta s-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-\theta s-\sigma_{k}-c t s$) if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-\theta s-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$; $\tau_{i} \tau_{j}-M-\sigma_{k}$-continuous (briefly, $\left.\tau_{i} \tau_{j}-M-\sigma_{k}-c t s\right)$ if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-M-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$; $\tau_{i} \tau_{j}-e-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-$ $\left.e-\sigma_{k}-c t s\right)$ if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-e-c$ set in $\left(X, \tau_{1}, \tau_{2}\right) ; \tau_{i} \tau_{j}-\delta p-\sigma_{k}$ -continuous (briefly, $\left.\tau_{i} \tau_{j}-\delta p-\sigma_{k}-c t s\right)$ if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-\delta p-c$ set in (X, τ_{1}, τ_{2}) and $\tau_{i}-\sigma_{k}$-continuous Error! Reference source not found. (briefly, $\tau_{i}-\sigma_{k}$-cts) if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-\tau_{i}$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.

2. $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-continuous Maps

Definition 2.1 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called
(1) $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts) if the inverse image of every $\sigma_{k}-\mathrm{c}$ set is an $\tau_{i} \tau_{j}-M^{*}$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.
(2) $\tau_{i} \tau_{j}-\delta-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-\delta-\sigma_{k}$-cts) if the inverse image of every σ_{k}-c set is an $\tau_{i} \tau_{j}-\delta$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.
(3) $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-cts) if the inverse image of every $\sigma_{k}-\mathrm{c}$ set is an $\tau_{i} \tau_{j}-\delta s$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.
(4) $\tau_{i} \tau_{j}-a-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-a-\sigma_{k}$-cts) if the inverse image of every σ_{k}-c set is an $\tau_{i} \tau_{j}-a$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.
(5) $\tau_{i} \tau_{j}-e^{*}-\sigma_{k}$-continuous (briefly, $\tau_{i} \tau_{j}-e^{*}-\sigma_{k}$-cts) if the inverse image of every $\sigma_{k}-\mathrm{c}$ set is an $\tau_{i} \tau_{j}-e^{*}$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Theorem 2.1 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a
(1) $\tau_{i}-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts
(2) $\tau_{i} \tau_{j}-\theta-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts
(3) $\tau_{i} \tau_{j}-\theta s-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts
(4) $\tau_{i} \tau_{j}-\theta-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\theta s-\sigma_{k}$-cts
(5) $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M-\sigma_{k}$-cts cts
(6) $\tau_{i} \tau_{j}-M-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-e-\sigma_{k}$-cts
(7) $\tau_{i} \tau_{j}-\delta p-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-e-\sigma_{k}$-cts
(8) $\tau_{i} \tau_{j}-\theta-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\delta$ - σ_{k}-cts
(9) $\tau_{i} \tau_{j}-\theta s-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-cts
(10) $\tau_{i}-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts
(11) $\tau_{i} \tau_{j}-\delta-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-a-\sigma_{k}$-cts
(12) $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\theta s-\sigma_{k}$-cts
(13) $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-e-\sigma_{k}$-cts
(14) $\tau_{i} \tau_{j}-\delta p-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-M-\sigma_{k}$-cts
(15) $\tau_{i} \tau_{j}-a-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\delta p-\sigma_{k}$-cts
(16) $\tau_{i} \tau_{j}-e-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-e^{*}-\sigma_{k}$-cts
(17) $\tau_{i} \tau_{j}-a-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\delta s-\sigma_{k}$-cts

Proof. (1) Let V be an σ_{k}-c set. Since f is $\tau_{i}-\sigma_{k}$-cts. $f^{-1}(v)$ is $\tau_{i} \tau_{j}-\sigma_{i}$-c. By Lemma $2.1 \mathrm{in}[13], f^{-1}(v)$ is $\tau_{i} \tau_{j}-M^{*}-\mathrm{c}$ in $\left(X, \tau_{1}, \tau_{2}\right)$. Therefore f is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts.
The proof of (2) to (17) are similar as in (1).
Example 2.1 Let $X=Y=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{d, c\},\{a, d, c\},\{b, c, d\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\},\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{Y, \phi,\{b, c\},\{b, d\}\} \quad$ and $\sigma_{2}=\{Y, \phi,\{b\},\{b, d\}$, $\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a
(1) $\tau_{1} \tau_{2}-M^{*}-\sigma_{1}$-cts but it is not $\tau_{1}-\sigma_{1}$-cts, since for the $\sigma_{1}-\mathrm{c}$ set $\{a, d\}, f^{-1}(\{a, d\})=\{a, d\}$ which is not $\tau_{1}-\mathrm{c}$ set.
(2) $\tau_{1} \tau_{2}-M^{*}-\sigma_{1}$-cts but it is not $\tau_{1} \tau_{2}-\theta-\sigma_{1}-$ cts, since for the $\sigma_{1}-\mathrm{c}$ set $\{a, c\}, f^{-1}(\{a, c\})=\{a, c\}$ which is not $\tau_{1} \tau_{2}-\theta$-c set.

Example 2.2 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined as in Example2.1, $\sigma_{1}=\{Y, \phi,\{d\},\{a, d\}\}$ and $\sigma_{2}=\{Y, \phi,\{d\},\{a, b, c\},\{a, b, d\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-M^{*}-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\theta s-\sigma_{1}-c t s$. Since for the σ_{1} $-c$ set $\{b, c\}, f^{-1}(\{b, c\})=\{b, c\}$ which is not $\tau_{1} \tau_{2}-\theta$-sc set.

Example 2.3 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.1, $\sigma_{1}=\{Y, \phi,\{b, c\},\{a, b, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{b\},\{a, b, c\},\{a, b, d\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-\theta s-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\theta-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{d\}, f^{-1}(\{d\})=\{d\}$ which is not $\tau_{1} \tau_{2}-\theta-c$ set.

Example 2.4 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.1, $\sigma_{2}=\{Y, \phi,\{d\},\{a, d\},\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-M$ - σ_{1}-cts but it is not $\tau_{1} \tau_{2}-M^{*}-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{a, b, c\}, f^{-1}(\{a, b, c\})=\{a, b, c\}$ which is not $\tau_{1} \tau_{2}-M^{*}-c$ set.

Example 2.5 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example 2.1, $\sigma_{1}=\{Y, \phi,\{c\},\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{c\},\{a, c\},\{a, c, d\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-e-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-M-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\}$ which is not $\tau_{1} \tau_{2}-M-c$ set.

Example 2.6 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.1, $\sigma_{1}=\{Y, \phi,\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, c\},\{a, c, d\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-e-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\delta p-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\}$ which is not $\tau_{1} \tau_{2}-\delta$-pc set.

Example 2.7 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.1, $\sigma_{1}=\{Y, \phi,\{c\},\{b, d\}\}$ and $\sigma_{2}=\{Y, \phi,\{b\},\{b, d\},\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-\delta-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\theta-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{a, b, d\}, f^{-1}(\{a, b, d\})=\{a, b, d\}$ which is not $\tau_{1} \tau_{2}-\theta-c$ set.

Example 2.8 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.1, $\sigma_{1}=\{Y, \phi,\{c\},\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{b\},\{a, c\},\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-\delta s-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\theta s-\sigma_{1}-c t s$. Since for the σ_{1} -c set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\}$ which is not $\tau_{1} \tau_{2}-\theta$-sc set.

Example 2.9 Let $X=Y=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a, b\}\}, \tau_{2}=\{\phi, X,\{c\}\} \sigma_{1}=\{Y, \phi,\{a, b\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, b\},\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}$ -$M^{*}-\sigma_{1}-c t s$ but it is not $\tau_{1}-\sigma_{1}-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{c, d\}, f^{-1}(\{c, d\})=\{c, d\}$ which is not $\tau_{1}-c$ set.

Example Let $2.10 \quad X=Y=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b\},\{a, c\},\{a, b, d\}\}, \quad \sigma_{1}=\{Y, \phi,\{b\},\{a, b\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, b\},\{a, b, d\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-a-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\delta-\sigma_{1}$ -cts. Since for the $\sigma_{1}-c$ set $\{a, c, d\}, f^{-1}(\{a, c, d\})=\{a, c, d\}$ which is not $\tau_{1} \tau_{2}-\delta-c$ set.

Example 2.11 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.10, $\sigma_{1}=\{Y, \phi,\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, c\},\{a, b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-\theta s-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-M^{*}-\sigma_{1}-c t s$. Since for the σ_{1} $-c$ set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\}$ which is not $\tau_{1} \tau_{2}-M^{*}-c$ set.

Example 2.12 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.10, $\sigma_{1}=\{Y, \phi,\{a, b\},\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, b\},\{a, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-e-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\delta s-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{c, d\}, f^{-1}(\{c, d\})=\{c, d\}$ which is not $\tau_{1} \tau_{2}-\delta$-sc set.

Example 2.13 Let $X=Y=\{a, b, c, d\}, \tau_{1}$ and τ_{2} are defined in Example2.10, $\sigma_{1}=\{Y, \phi,\{b\},\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, b\},\{a, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-M-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-\delta p-\sigma_{1}-c t s$. Since for the σ_{1} $-c$ set $\{a, c, d\}, f^{-1}(\{a, c, d\})=\{a, c, d\}$ which is not $\tau_{1} \tau_{2}-\delta-p c$ set.

Example 2.14 Let $X=Y=\{a, b, c\}, \tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\}\},, \quad \tau_{2}=\{\phi, X,\{a\},\{a, b\}\}$, $\sigma_{1}=\{Y, \phi,\{a, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{a\},\{a, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $\tau_{1} \tau_{2}-\delta p-\sigma_{1}-c t s$ but it is not $\tau_{1} \tau_{2}-a-\sigma_{1}-c t s$. Since for the $\sigma_{1}-c$ set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\}$ which is not $\tau_{1} \tau_{2}-a-c$ set.

Example 2.15 Let $X=Y=\{a, b, c\},, \tau_{1}$ and τ_{2} are defined in Example 2.14, $\sigma_{1}=\{Y, \phi,\{b, c\}\}$ and $\sigma_{2}=\{Y, \phi,\{b\},\{b, c\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a
(1) $\tau_{1} \tau_{2}-e^{*}-\sigma_{1}$-cts but it is not $\tau_{1} \tau_{2}-e-\sigma_{1}-\mathrm{cts}$, since for the $\sigma_{1}-\mathrm{c}$ set $\{a\}, f^{-1}(\{a\})=\{a\}$ which is not $\tau_{1} \tau_{2}-e-\mathrm{c}$ set.
(2) $\tau_{1} \tau_{2}-\delta p-\sigma_{1}$-cts but it is not $\tau_{1} \tau_{2}-a-\sigma_{1}-\mathrm{cts}$, since for the $\sigma_{1}-\mathrm{c}$ set $\{a\}, f^{-1}(\{a\})=\{a\}$ which is not $\tau_{1} \tau_{2}-a-c$ set.

Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Theorem 2.2 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts. iff the inverse image of every σ_{k}-o set in Y is $\tau_{i} \tau_{j}-M^{*}$-o in X.

Proof. Let G be a $\sigma_{k}-$ o set in Y. Then G^{c} is σ_{k}-c set in Y. Since f is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$ -cts, $f^{-1}\left(G^{c}\right)$ is $\tau_{i} \tau_{j}-M^{*}-\mathrm{c}$ in X. That is $f^{-1}\left(G^{c}\right)=\left(f^{-1}(G)\right)^{c}$ and so $f^{-1}(G)$ is $\tau_{i} \tau_{j}-M^{*}$ -o in (X, τ_{1}, τ_{2}).
Conversely, let F be a σ_{k}-c set in Y. Then F^{c} is $\sigma_{k}-\mathrm{p}$ set in Y. By hypothesis, $f^{-1}\left(F^{c}\right)$ is $\tau_{i} \tau_{j}-M^{*}-\mathrm{o}$ in X. That is $f^{-1}\left(F^{c}\right)=\left(f^{-1}(F)\right)^{c}$ and so $f^{-1}(F)$ is $\tau_{i} \tau_{j}-M^{*}$-c in $\left(X, \tau_{1}, \tau_{2}\right)$. Therefore f is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts.

Theorem 2.3 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}-c t s$, then $f\left(\tau_{i} \tau_{j}-\right.$ $\left.M^{*} c l(A)\right) \subset \sigma_{k} c l(f(A))$ holds for every subset A of X.
Proof. Let A be any subset of X. Then $f(A) \subseteq \sigma_{k} c l(f(A))$ and $\sigma_{k} c l(f(A))$ is σ_{k}-c set in Y. Also $f^{-1}(f(A)) \subseteq f^{-1}\left(\sigma_{k} c l(f(A))\right)$. That is $A \subseteq f^{-1}\left(\sigma_{k} c l(f(A))\right)$. Since f is $\tau_{i} \tau_{j}$ -$M^{*}-\sigma_{k}-\mathrm{cts}, f^{-1}\left(\sigma_{k} c l(f(A))\right)$ is $\tau_{i} \tau_{j}-M^{*}-\mathrm{c}$ in $\left(X, \tau_{1}, \tau_{2}\right)$. By Theorem 2.7 in [13] $\tau_{i} \tau_{j}-$ $M^{*} c l(A) \subseteq f^{-1}\left(\sigma_{k} c l(f(A))\right)$. Therefore $f\left(\tau_{i} \tau_{j}-M^{*} c l(A) \subseteq f\left(f^{-1}\left(\sigma_{k} c l(f(A))\right) \subseteq \sigma_{k} c l(f(A))\right.\right.$. Hence $f\left(\tau_{i} \tau_{j}-M^{*} c l(A) \subseteq \sigma_{k} c l(f(A))\right.$ for every subset A of $\left(X, \tau_{1}, \tau_{2}\right)$.
Converse of the above Theorem Error! Reference source not found. is not true as seen from the following Example.

Example 2.16 Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{\phi, X,\{a\},\{b, c\}$, $\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{\phi, Y,\{p\}\}$ and $\sigma_{2}=\{Y, \phi\}$. Then $\tau_{2} \tau_{1}$ $M^{*}=\{X, \phi,\{c\},\{d\},\{a, b\},\{c, d\},\{a, c\},\{b, d\},\{a, b, c\},\{b, c, d\},\{a, c, d\},\{a, b, d\}\}$. Define a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right) \quad$ by $\quad f(a)=f(c)=f(d)=p \quad$ and $\quad f(b)=q$. Then $f((2,1)$ $\left.M^{*} c l(A)\right) \subseteq \sigma_{1} c l(f(A))$ for every subset A of X. But f is not $\tau_{2} \tau_{1}-M^{*}-\sigma_{1}-c t s$, since for the $\sigma_{1}-c$ set $\{q\}, f^{-1}(\{q\})=\{b\}$ which is not $(2,1)-M^{*}-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Theorm 2.4 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}-c t s$ and $g:\left(Y, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right)$ is $\eta_{n}-\sigma_{k}-c t s$, then gof if $\tau_{i} \tau_{j}-M^{*}-\eta_{n}-c t s$.
Proof. Let F be η_{n}-c set in $\left(Z, \eta_{1}, \eta_{2}\right)$. Since g is $\eta_{n}-\sigma_{k}$-cts, $g^{-1}(F)$ is σ_{k}-c set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$. Since f is $\tau_{i} \tau_{j}-M^{*}-\sigma_{k}$-cts, $f^{-1}\left(g^{-1}(F)\right)=(g o f)^{-1}(F)$ is $\tau_{i} \tau_{j}-M^{*}$-c set in (X, τ_{1}, τ_{2}) and hence gof in $\tau_{i} \tau_{j}-M^{*}-\eta_{n}$-cts.

References

[1] G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Cal. Math. Soc., 74 (1987), 195-206.
[2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, on θ-semi-open sets and separation axioms in topological spaces, Carpathian. J. Math., 24 (1) (2008), 13-22.
[3] A. Devika and A. Thilagavathi, $\quad M^{*}$-open sets in topological spaces, International Journal of Mathematics and its Applications., 4 (1-B) (2016), 1-8.
[4] J. Dontchev and H. Maki, Groups if θ-generalized homeomorphisms and the digital line, Topology Appl., 95 (2) (1999), 113-128.
[5] E. Ekici, On e-open sets, $D P^{*}$-sets and $D P E^{*}$-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., 33 (2) (2008), 269-282.
[6] A. I. El-Maghrabi and M. A. Al-Juhany, M-open sets in topological spaces, Pioneer J. of Mathematics and Mathematical Sciences., 4 (2) (2011), 213-230.
[7] H. Maki, P. Sundaram and K. Balachandran, on generalized continuous map and pasting lemma in bitopological spaces, Bull. Fukuoka Univ. Fd, part-III 40 (1991), 23-31.
[8] J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
[9] M. Lellis Thivagar, O. Ravi, On stronger forms of (1,2)*- quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra, 14 (6) (2004), 481-492.
[10] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70 (1963), 36-41.
[11] J.H. Park, B.Y. Lee, M.J. Son , On δ-semiopen sets in topological spaces, Journal of the Indian Academy of Mathematics., 19(1)(1997), 59-67
[12] S. Raychaudhhuri and N. Mukherjee, on δ-almost continuity and δ-pre-open sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
[13] A. Vadivel, S. Murugambigai and R. Dharani, M^{*}-open sets in bitopological spaces, submitted.
[14] A. Vadivel, R. Venugopal and M. Shanthi, M -open sets in bitopological spaces, submitted.
[15] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78, 103-118.

