$D_{\mu M}\left(\tau_{N}, r_{i}\right)-\sigma_{t}$-continuous Maps and MC-bi -continuous Maps

A. VADIVEL 1_{-}, R. VENUGOPAL2y and M. SHANTH ${ }_{3 z}$
${ }^{1 \& 3}$ Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous). Karur-639 005, Tamil Nadu.
${ }^{182}$ Department of Mathematics, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu.

Abstract

The aim of this paper is to introduce and investigate the concept of $D_{M}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$ -continous maps which are introduced in a bitopological space in analogy with M - continous maps in topological spaces. Also, we have introduced the concept of M-bi-continuity, $M-s$ $b i$-continuity and pairwise M-irresolute in bitopological spaces and study some of the properties.

Keywords and phrases: M - bi -continuity, $M-s-b i$-continuity, pairwise M -irresolute

AMS (2000) subject classification: 54D10, 54E55.

1. Introduction and Preliminaries

Levine in 1963 initiated a new types of open set called semiopen set[8]. A subset A of a space (X, τ) is called regular open (resp., regular closed) [11]if $A=\operatorname{int}(\operatorname{cl}(A))$ (resp., $A=\operatorname{cl}(\operatorname{int}(A))$. The delta interior [3] of a subset A of (X, τ) is the union of all regular open sets of X contained in A and is denoted by $\operatorname{Sint}(A)$. A subset A of a space (X, τ) is called δ-open [9] if $A=\operatorname{sint}(A)$. The complement of δ-open set is called δ-closed. Alternatively, a set A of (X, τ) is called δ-closed [3] if $A=\delta \operatorname{cl}(A)$, where $\delta c l(A)=\{x \in X: A \cap \operatorname{int}(c l(U)) \neq \phi, \quad U \in \tau$ and $x \in U\}$. A subset A of a space X is called θ-open [1] if $A=\operatorname{\theta int}(A)$, where $\operatorname{\theta int}(A)=\bigcup\left\{\operatorname{int}(U): U \subseteq A, U \in \tau^{c}\right\}$, and a subset A is called θ-semiopen [2] (resp., δ - preopen [9] , e-open [4] and M-open[5]) if $A \subseteq \operatorname{cl}(\operatorname{\theta int}(A)) \quad(r e s p ., \quad A \subseteq \operatorname{int}(\delta c l(A)) \quad, \quad A \subseteq c l(\operatorname{dint}(A)) \cup \operatorname{int}(\delta c l(A)) \quad$ and $A \subseteq \operatorname{cl}(\operatorname{\theta int}(A)) \cup \operatorname{int}(\delta c l(A)))$, where $\operatorname{int}(), \quad \operatorname{cl}(), \operatorname{\theta int}(), \operatorname{\delta int}()$ and $\delta c l()$ are the interior, closure, θ-interior, δ-interior and δ-closure operations, respectively. The notion of bitopological spaces (in short, Bts's) was first introduced by Kelly [6].

Throughout this paper, let $\left(X, \tau_{1}, \tau_{2}\right)$ or simply X be a Bts and $i, j \in\{1,2\}$. A subset S of a Bts X is said to be $\tau_{1,2}$-open [7] if $S=A \cup B$ where $A \in \tau_{1}$ and $B \in \tau_{2}$. A subset S of X is said to be $\tau_{1,2}$-closed if the complement of S is $\tau_{1,2}$-open. and $\tau_{1,2}$ -clopen if S is both $\tau_{1,2}$-open and $\tau_{1,2}$-closed. For a subset A of X, the interior (resp., closure) of A with respect to τ_{i} will be denoted by $\operatorname{int}_{i}(A)$ (resp., $c l_{i}(A)$) for $i=1,2$. In this paper, we introduce and investigate the concept of $D_{m}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-continous maps in a bitopological space. Also, we have introduced the concept of M-bi-continuity, $M-s-b i$
-continuity and pairwise M-irresolute in bitopological spaces and study some of the properties. In addition, several properties of these notions and connections to several other known ones are provided.

Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a Bts. A subset A of X is called $\tau_{i} \tau_{j}-M$-open [10] (briefly, $\tau_{i} \tau_{j}$ -M-o) if $A \subseteq c l_{j}\left(\theta \operatorname{int}_{i}(A)\right) \cup \operatorname{int}_{i}\left(\delta c l_{j}(A)\right)$ and A is $\tau_{i} \tau_{j}-M$ closed (in short, $\tau_{i} \tau_{j}-M-\mathrm{c}$) if $X \backslash A$ is $\tau_{i} \tau_{j}-M-\mathrm{o}$. A is pairwise M-open if it is both $\tau_{i} \tau_{j}-M$-o and $\tau_{j} \tau_{i}-M$-o. A subset A of X is called $\tau_{i} \tau_{j}-\theta$-semiopen [10] (briefly, $\tau_{i} \tau_{j}-\theta$-so) if $A \subseteq c l_{j}\left(\theta i n t_{i}(A)\right), \tau_{i} \tau_{j}-\delta$ -preopen (briefly, $\tau_{i} \tau_{j}-\delta$-po) if $A \subseteq \operatorname{int}_{i}\left(\delta c l_{j}(A)\right) \quad, \quad \tau_{i} \tau_{j}-e$-open if $A \subseteq \operatorname{cl}_{j}\left(\operatorname{Sint}_{i}(A)\right) \cup \operatorname{int}_{i}\left(\delta c l_{j}(A)\right)$. Clearly A is $\tau_{i} \tau_{j}-M$-c if and only if $\operatorname{int}_{j}\left(\theta c l_{i}(A)\right) \cap c l_{i}\left(\operatorname{Sint}_{j}(A)\right) \subseteq A$. We denote the family of all (i,j)-M-c (resp., $\left.(i, j)-M-0\right)$ sets in a Bts $\left(X, \tau_{1}, \tau_{2}\right)$ by $D_{M C}\left(\tau_{i}, \tau_{j}\right)$ (resp., $\left.D_{M O}\left(\tau_{i}, \tau_{j}\right)\right)$. The intersection of all $\tau_{i} \tau_{j}-M-\mathrm{c}$ sets containing A is called the $\tau_{i} \tau_{j}-M$ closure of A, denoted by $\tau_{i} \tau_{j}-M \mathrm{cl}(\mathrm{A})$. i.e., $\tau_{i}, \tau_{j}-$ $\operatorname{Mcl}(A)=\bigcap\left\{U: A \subseteq U, U \in D_{M C}\left(\tau_{i}, \tau_{j}\right)\right\}$. The union of all $\tau_{i} \tau_{j}-M$-o sets contained in A is called the $\tau_{i} \tau_{j}-M$ interior of A, denoted by $\tau_{i} \tau_{j}-\operatorname{Mint}(A)$. i.e., $\tau_{i}, \tau_{j}-$ $\operatorname{Mint}(A)=\bigcup\left\{U: U \subseteq A, U \in D_{\text {MO }}\left(\tau_{i}, \tau_{j}\right)\right\}$.
2. $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-continuous Maps and $M C$ - $b i$ - continuous

Maps

Definition 2.1 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$ -continuous (in short, $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts) if the inverse image of every $\sigma_{k}-c$ set is an $\tau_{i} \tau_{j}-M-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Remark 2.1 If $\tau_{1}=\tau_{2}=\tau$ and $\sigma_{1}=\sigma_{2}=\sigma$ in Definition Error! Reference source not found., then the $D_{M C}\left(\tau_{i} \tau_{j}\right)-\sigma_{k}$-continuity of maps coincides with M-continuity of maps in topological spaces.

Theorem 2.1 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is an
(i) $\tau_{i} \tau_{j}-\sigma_{k}-\theta$-scts then it is a $\tau_{i} \tau_{j}-\sigma_{k}-M$-cts.
(ii) $\tau_{i} \tau_{j}-\sigma_{k}-\delta$-pcts then it is a $\tau_{i} \tau_{j}-\sigma_{k}-M$-cts.
(iii) $\tau_{i}-\sigma_{k}-\theta$-cts then it is a $\tau_{i} \tau_{j}-\sigma_{k}-\theta$-scts.
(iv) $\tau_{i}-\sigma_{k}-\theta$-cts then it is a $\tau_{i}-\sigma_{k}$-cts.
(v) $\tau_{i}-\sigma_{k}$-cts then it is a $\tau_{i} \tau_{j}-\delta$-pcts.
(vi) a $\tau_{i} \tau_{j}-\sigma_{k}-M$-cts then it is a $\tau_{i} \tau_{j}-e$-cts.

Proof. (i) Let V be a $\sigma_{k}-\mathrm{c}$ set. Since f is $\tau_{i} \tau_{j}-\sigma_{k}-\theta$-scts, $f^{-1}(V)$ is $\tau_{i} \tau_{j}-\theta$-sc. By Proposition 2.1 in [10] $f^{-1}(V)$ is $\tau_{i} \tau_{j}-M-c$ in $\left(X, \tau_{1}, \tau_{2}\right)$. Therefore f is $\tau_{i} \tau_{j}-\sigma_{k}-M$ -cts.

The proof of (ii) to (vi) are similar.
Example 2.1 Let $X=Y=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}, \tau_{2}=\{\phi, X,\{a\}$, $\{b, d\},\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{\phi, Y,\{a\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\},\{b\},\{a, b\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \tau_{2}-M$-cts but is not $\tau_{1} \tau_{2}-\theta$-scts, since for the $\sigma_{1}-c$ set
$\{b, c, d\}, f^{-1}(\{b, c, d\})=\{b, c, d\}$ which is not $\tau_{1} \tau_{2}-\theta$-sc set.
Example 2.2 Let $X=Y=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{c, d\},\{a, c, d\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\},\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{\phi, Y,\{a\},\{a, d\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \tau_{2}-M$-cts but is not $\tau_{1} \tau_{2}-\delta$-pcts, since for the $\sigma_{1}-c$ set $\{b, c\}, \quad f^{-1}(\{b, c\})=\{b, c\}$ which is not $\tau_{1} \tau_{2}-\delta-p c$ set.

Example Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\}, \quad\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{\phi, Y,\{b, c, d\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \tau_{2}-\theta$-scts but is not $\tau_{1}-\theta$-cts, since for the $\sigma_{1}-c$ set $\{a\}, f^{-1}(\{a\})=\{a\}$ which is not $\tau_{1}-\theta-c$ set.

Example Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\},\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{\phi, Y,\{b, c\},\{a, b, c\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is τ_{1}-cts but is not $\tau_{1}-\theta$-cts, since for the $\sigma_{1}-c$ set $\{a, d\}, f^{-1}(\{a, d\})=\{a, d\}$ which is not $\tau_{1}-\theta-c$ set.

Example 2.5 Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\},\{a, c\},\{a, b, d\}\}, \sigma_{1}=\{\phi, Y,\{a, b\},\{a, b, d\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \tau_{2}-\delta$-pcts but is not τ_{1}-cts, since for the σ_{1} -c set $\{c, d\}, f^{-1}(\{c, d\})=\{c, d\}$ which is not $\tau_{1}-c$ set.

Example 2.6
Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b, c\},\{a, b, c\}\}$, $\tau_{2}=\{\phi, X,\{a\},\{b, d\}, \quad\{a, c\},\{a, b, d\}\}, \quad \sigma_{1}=\{\phi, Y,\{a, c\}\}$ and $\sigma_{2}=\{\phi, Y,\{a\}\}$. Then the identity map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \tau_{2}-e-c t s$ but is not $\tau_{1} \tau_{2}-M-c t s$, since for the $\sigma_{1}-c$ set $\{b, d\}, f^{-1}(\{b, d\})=\{b, d\} \quad$ which is not $\tau_{1} \tau_{2}-M-c$ set.

$$
\tau_{i}-\theta-\sigma_{k}-\mathrm{cts}
$$

No1 $\tau_{i} \tau_{j}-\sigma_{k}-M$ cts $\longrightarrow \tau_{i} \tau_{j}-\sigma_{k}-e$ cts $\quad \mathrm{t}$ not conversely.
Theorem 2.2 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}-c t s$. iff the inverse image of every $\sigma_{k}-p$ set in Y is $\left(\tau_{i}, \tau_{j}\right)-M-p$ in X.

Proof. Let G be a $\sigma_{k}-\mathrm{p}$ set in Y. Then G^{c} is $\sigma_{k}-\mathrm{c}$ set in Y. Since f is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts, $f^{-1}\left(G^{c}\right)$ is $\left(\tau_{i}, \tau_{j}\right)-M$-c in X. That is $f^{-1}\left(G^{c}\right)=\left(f^{-1}(G)\right)^{c}$ and so $f^{-1}(G)$ is $\left(\tau_{i}, \tau_{j}\right)-M$-p in $\left(X, \tau_{1}, \tau_{2}\right)$.

Conversely, let F be a σ_{k}-c set in Y. Then F^{c} is $\sigma_{k}-\mathrm{p}$ set in Y. By hypothesis, $f^{-1}\left(F^{c}\right)$ is $\left(\tau_{i}, \tau_{j}\right)-M-\mathrm{p}$ in X. That is $f^{-1}\left(F^{c}\right)=\left(f^{-1}(F)\right)^{c}$ and so $f^{-1}(F)$ is $\left(\tau_{i}, \tau_{j}\right)-M$
-c in $\left(X, \tau_{1}, \tau_{2}\right)$. Therefore f is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts.
Theorem 2.3 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts, then $f\left(\left(\tau_{i} \tau_{j}\right)-M-c l(A)\right) \subset \sigma_{k}-c l(f(A))$ holds for every subset A of X.

Proof. Let A be any subset of X. Then $f(A) \subseteq \sigma_{k}-c l(f(A))$ and $\sigma_{k}-c l(f(A))$ is σ_{k}-c set in Y. Also $f^{-1}(f(A)) \subseteq f^{-1}\left(\sigma_{k}-c l(f(A))\right)$. That is $A \subseteq f^{-1}\left(\sigma_{k}-c l(f(A))\right)$. Since f is $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts, $f^{-1}\left(\sigma_{k}-c l(f(A))\right)$ is $\left(\tau_{i} \tau_{j}\right)-M-c$ in $\left(X, \tau_{1}, \tau_{2}\right)$. By Theorem 2.7 in [10] $\quad \tau_{i} \tau_{j}-M-\operatorname{cl}(A) \subseteq f^{-1}\left(\sigma_{k}-\operatorname{cl}(f(A))\right)$. Therefore $\quad f\left(\left(\tau_{i} \tau_{j}-M-\ln (A)\right) \subseteq f\left(f^{-1}\left(\sigma_{k}-\right.\right.\right.$ $c l(f(A))) \subseteq \sigma_{k}-c l(f(A))$. Hence $f\left(\left(\tau_{i} \tau_{j}-M-c l(A)\right) \subseteq \sigma_{k}-c l(f(A))\right.$ for every subset A of $\left(X, \tau_{1}, \tau_{2}\right)$.

Converse of the above Theorem 2.3 is not true as seen from the following Example.
Example 2.7 Let $X=\{a, b, c, d\}, \tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{\phi, X,\{a\},\{b, c\}, \quad\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{\phi, Y,\{p\}\}$ and $\sigma_{2}=\{Y, \phi\}$. Then $D_{M}(2,1)=\{X, \phi,\{c\},\{d\},\{a, b\},\{c, d\},\{a, c\},\{b, d\},\{a, b, c\},\{b, c, d\},\{a, c, d\},\{a, b, d\}\}$. Define a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ by $f(a)=f(c)=f(d)=p$ and $f(b)=q$. Then $f((2,1)-$ $M-c l(A)) \subseteq \sigma_{1}-c l(f(A))$ for every subset A of X. But f is not $D_{M C}(2,1)-\sigma_{1}-c t s$, since for the $\sigma_{1}-c$ set $\{q\}, f^{-1}(\{q\})=\{b\}$ which is not $(2,1)-M-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Theorem 2.4 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\sigma_{k}$-cts and $g:\left(Y, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right)$ is $\sigma_{k}-\eta_{n}-c t s$, then gof if $D_{M C}\left(\tau_{i}, \tau_{j}\right)-\eta_{n}-c t s$.

Proof. Let F be η_{n}-c set in $\left(Z, \eta_{1}, \eta_{2}\right)$. Since g is $\sigma_{k}-\eta_{n}-c t s, g^{-1}(F)$ is σ_{k}-c set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$. Since f is $D_{M C}\left(\tau_{i} \tau_{j}\right)-\sigma_{k}$-cts, $f^{-1}\left(g^{-1}(F)\right)=(g o f)^{-1}(F)$ is $\left(\tau_{i}, \tau_{j}\right)-M$-c set in $\left(X, \tau_{1}, \tau_{2}\right)$ and hence $g o f$ in $D_{M C}\left(\tau_{i}, \tau_{j}\right)$ - η_{n}-cts.

Definition 2.2 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called
(i) M-bi-cts if f is $D_{M C}(1,2)-\sigma_{2}$-cts and is $D_{M C}(2,1)-\sigma_{1}$-cts.
(ii) M-strongly-bi-cts (briefly $M-s$-bi-cts) if f is M-bi-cts, $D_{M C}(2,1)-\sigma_{2}$ -cts and $D_{M C}(1,2)-\sigma_{1}$-cts.
(iii) pairwise M-irresolute if $f^{-1}(A) \in D_{M}\left(\tau_{i}, \tau_{j}\right)$ in $\left(X, \tau_{1}, \tau_{2}\right)$ for every $A \in D_{M}(k, e)$ in $\left(Y, \sigma_{1}, \sigma_{2}\right)$.

Remark 2.2 If $\tau_{1}=\tau_{2}$ and $\sigma_{1}=\sigma_{2}$ simultaneously, then f becomes a M -irresolute map.

Theorem 2.5 Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a map.
(i) If f is $b i$-cts then f is M-bi-cts.
(ii) If f is s-bi-cts then f is $M-s-b i$-cts.
(iii) If f is $\theta-s-b i$-cts then f is $M-b i$-cts.
(iv)If f is δ-pcts then f is $M-s-b i$-cts.
(v) If f is M-bi-cts then f is e-bi-cts.
(vi) If f is $M-s-b i$-cts then f is $e-s-b i$-cts.

Proof. (i) Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a bi-cts map. Then f is $\tau_{1}-\sigma_{1}$-cts and $\tau_{2}-\sigma_{2}$-cts and so by Theorem 2.1, f is $D_{M C}(1,2)-\sigma_{2}$-cts and $D_{M C}(2,1)-\sigma_{1}$-cts. Thus f is $M-b i$-cts.

The proof of (ii) to (vi) are similar.
The converse of this Theorem 2.5 need not be true in general as seen from the following Examples.

Example 2.8 Let $X=\{a, b, c, d\}, \tau_{1}=\{X, \phi,\{q\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{X, \phi,\{a\},\{b, c\}, \quad\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{Y, \phi\}$ and $\sigma_{2}=\{Y, \phi,\{p\}\}$. Define a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ by $f(a)=f(b)=f(c)=q$ and $f(d)=p$. Then f is M-s-bi-cts but not s-bi-cts. This map is also $M-b i-c t s$ but not bi-cts.

Example 2.9 Let $X=\{a, b, c, d\}, \quad \tau_{1}=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{X, \phi,\{a\},\{b, c\}, \quad\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{Y, \phi\}$ and $\sigma_{2}=\{Y, \phi,\{p\}\}$. Define a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ by $f(a)=f(b)=f(c)=q$ and $f(d)=p$. Then this function f is M-bi-cts but not $\theta-s-b i-c t s$. This map is also $M-s-b i-c t s$ but not $\delta-p-b i$ -cts.

Example 2..10 Let $X=\{a, b, c, d\}, \tau_{1}=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{X, \phi,\{a\},\{b, c\}, \quad\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{Y, \phi\}$ and $\sigma_{2}=\{Y, \phi,\{p\}\}$. Define a $\operatorname{map} f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ by $f(a)=f(b)=p \quad$ and $f(c)=f(d)=q$. Then this function f is e-bi-cts but it is not M-bi-cts. This map is also $e-s-b i-c t s$ but not $M-b i$ -cts.

Remark 2.3 The following diagram summarizes the above discussions.

Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Theorem 2.6 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is pairwise M-irresolute, then f is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\sigma_{e}-c t s$.

Proof. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be pairwise M-irresolute and F be a $\sigma_{e}-\mathrm{c}$ set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$. Then F is $(k, e)-M-c$ in $\left(Y, \sigma_{1}, \sigma_{2}\right)$ by Proposition 2.1 in Error! Reference source not found.. By hypothesis, $f^{-1}(F)$ is $\left(\tau_{i}, \tau_{j}\right)$-M -c set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Therefore f is $D_{M}\left(\tau_{i}, \tau_{j}\right)$ - σ_{e}-cts.
The converse of this Theorem [10] is not true in general as seen from the following Example.

Example 2.11 Let $X=\{a, b, c, d\}, \tau_{1}=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\tau_{2}=\{X, \phi,\{a\}$, $\{b, c\},\{a, b, c\}\}$ and $Y=\{p, q\}, \sigma_{1}=\{Y, \phi\}$ and $\sigma_{2}=\{Y, \phi,\{p\}\}$. Define a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ by $f(b)=f(c)=p$ and $f(a)=f(d)=q$. Then f is $\left(\tau_{1}, \tau_{2}\right)$ -$M-\sigma_{2}-c t s$ but it is not pairwise M-irresolute, since for the $\left(\tau_{1}, \tau_{2}\right)-M-c$ set $\{p\}$ in $\left(Y, \sigma_{1}, \sigma_{2}\right), f^{-1}(\{p\})=\{b, c\}$ which is not $\left(\tau_{1}, \tau_{2}\right)-M-c$ set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Theorem 2.7 A map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is pairwise M-irresolute iff the inverse image of every $(k, e)-M$-o set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\left(\tau_{i}, \tau_{j}\right)$-M -o set in $\left(X, \tau_{1}, \tau_{2}\right)$.

Proof. Proof is similar to that of Theorem 2.2
Theorem 2.8 If $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ and $g:\left(Y, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right)$ are two pairwise M-irresolute maps, then their composition gof is also pairwise M-irresolute.

Proof. Let $A \in D_{M}(m, n)$ in $\left(Z, \eta_{1}, \eta_{2}\right)$. Since g is pairwise M-irresolute, $g^{-1}(A) \in D_{M}(k, e)$ in $\left(Y, \sigma_{1}, \sigma_{2}\right)$. Since f is pairwise M-irresolute $f^{-1}\left(g^{-1}(A)\right)=(g \circ f)^{-1}(A) \in D_{M}\left(\tau_{i}, \tau_{j}\right)$. Hence gof is pairwise M-irresolute.

Theorem 2.9 If a map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is pairwise M-irresolute and $g:\left(Y, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right) \quad$ is $\quad D_{M}(k, e)-\eta_{n}-c t s$, then $g o f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}\right)$ is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\eta_{n}$-cts.

Proof. Let F be a $\eta_{n}-\mathrm{c}$ set in $\left(Z, \eta_{1}, \eta_{2}\right)$. Since g is $D_{M}(k, e)-\eta_{n}$-cts, $g^{-1}(F) \in D_{M}(k, e)$ in $\left(Y, \sigma_{1}, \sigma_{2}\right)$. Since f is pairwise M-irresolute, $f^{-1}\left(g^{-1}(A)\right)=(\operatorname{gof})^{-1}(A) \in D_{M}\left(\tau_{i}, \tau_{j}\right)$ in $\left(X, \tau_{1}, \tau_{2}\right)$ and hence gof is $D_{M}\left(\tau_{i}, \tau_{j}\right)-\eta_{n}$-cts.

References

[1]G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Cal. Math. Soc., 74 (1987), 195-206.
[2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, on θ-semi-open sets and separation axioms in topological spaces, Carpathian. J. Math., 24 (1) (2008), 13-22.
[3] J. Dontchev and H. Maki, Groups if θ-generalized homeomorphisms and the digital line, Topology Appl., 95 (2) (1999), 113-128.
[4] E. Ekici, On e-open sets, $D P^{*}$-sets and $D P E^{*}$-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., 33 (2) (2008), 269-282.
[5] A. I. El-Maghrabi and M. A. Al-Juhany, M-open set in topological spaces, Pioneer J. of Mathematics and Mathematical Sciences., 4 (2) (2011), 213-230.
[6]J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
[7]M. Lellis Thivagar, O. Ravi, On stronger forms of (1,2)*- quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra, 14 (6) (2004), 481-492.
[8]N. Levine, Semi-open sets and semi-continuity in topological spaces, American
Mathematical Monthly, 70 (1963), 36-41.
[9] S. Raychaudhhuri and N. Mukherjee, on δ-almost continuity and δ-pre-open sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
[10] A. Vadivel, R. Venugopal and M. Shanthi, M -open sets in bitopological spaces, submitted.
[11] N. V. Velicko, $\quad H$-closed topological spaces, Amer. Math. Soc. transl., 78, 103-118.

