
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 342



Abstract— There are many sensor nodes in the environment

like soil moisture sensors, temperature sensors, pollution

sensors, etc. The operation of these sensors is controlled by the

microcontrollers that they are interfaced with. The main

limitation of these sensor nodes in the environment is their

battery life. If the battery life is just a few weeks, then the battery

has to be replaced several times a year. The approach here is to

minimize the current consumption of sensor nodes like the

esp8266 Wi-Fi module that will be interfaced with sensors so

that it is capable of working under very low power. And the

battery supplying power must be functional for at least half a

year since it is convenient to replace the battery of a sensor node

once a year rather than having to replace it every few weeks. The

methods that need to be adopted so as to reduce power

consumption of sensor nodes to achieve power efficient

employment of Internet of Things (IoT) is discussed in this

paper.

IndexTerms—esp8266,IoT,sensors,WiFi

I. INTRODUCTION

 The number of sensor nodes in the environment is

increasing at a rapid rate daily in order to facilitate the

Internet of Things (IoT). Such sensors are used in data

analysis of physical phenomena like changes in the weather,

soil moisture and humidity level, pollution indication and

much more. These sensors need to be deployed in the

environment and they also need to work efficiently for a long

period of time without draining the battery completely. In

order to achieve this, the sensor node needs to be

programmed and designed in such a way that power is used

sparingly since battery power is always limited. The world is

going to witness an exponential rise in the devices connected

to the Internet to enable the Internet of things in the coming

years. Hence the requirement of battery-operated low power

sensor nodes is also going to be crucial. The main sources of

power consumption are transmitting or resaving data,

Processing query requests, forwarding queries and data to the

neighbors which together constitute useful power

consumption. Transmitting with high power in decibels per

milliwatt to devices that are placed nearby, idle listening to a

wireless channel waiting for possible traffic and transmitting

beacon frames to detect the presence of wireless devices in

the vicinity constitute wasteful power consumption. This

paper discusses how the sources of wasteful power

consumption were minimized, restricted and regulated. An

approach was proposed for the ultra-low power

implementation of control-oriented application tasks of a

WSN (Wireless Sensor Network) application [1]. Their

approach was based on power-gated hardware tasks that are

implemented as specialized hardware blocks. The synthesis

results for the hardware tasks of the case study application

graph show that, compared with the MSP430

micro-controller and under a very conservative assumption,

power reductions by two orders of magnitude are possible.

Another related work [2] proposed cost-effective and

self-powered networking devices for an Internet-accessible

wireless environment monitoring system. The devices could

harvest energy from various sources including solar and

ambient RF radiation, and wireless power transmission

(WPT). An electronic system [3] was devised to investigate

the amount of current drawn by sensor node from battery in

operating condition. In this work, an electronic system based

on a dedicated PCB to visualize node current consumption

usage and charge extracted from the battery during node

operating states was presented. They selected benchmarks

that represent usual tasks in WSN applications and node

current consumption was experimentally analyzed. In [4],

the problem of power consumption reduction in Wireless

Sensor Networks used in gas sensing applications was

discussed and the power consumption of a gas sensor node

was reduced to 85.68 mW. The results obtained in this paper

achieve reduction in power consumption well below this

level by duty cycling the sensor node under consideration

(ESP8266 Wi-Fi module) and also by executing a few tricks

in code that reduces the average time that the radio stays on

for.

 Methods of reducing power consumption of sensor nodes is

discussed in this paper, initially discussing the basic

operation in section II. Few additional tricks, work arounds

and methods of optimization are discussed in section V.

Section VI discusses the methodology and flow diagram.

Battery life is also estimated through calculations and is

depicted in section VII.

II. FUNCTION OF A SENSOR NODE

A. Modus Operandi

 A Wi-Fi signal transmission/reception node (ESP8266

Wi-Fi module) was used in this project. and the data sensed

by the sensor was processed and transferred to the cloud

server as depicted in Fig.1. A hardware circuit was designed

for the sensor. The microcontroller (ESP8266) was

programmed depending on the behavior of Wi-Fi and the

sensor was activated accordingly. The battery serves as the

main power source for the system. The sensors are interfaced

with the microcontroller (ESP8266). The microcontroller

was programmed with the help of a computer. The

microcontroller should have Network facility in order to

communicate with

[1]D’Costa Brenner Branco Rosario
 [1] M.E. Student, Department of Electronics and Telecommunication Engineering, Goa College of

Engineering, Ponda Goa

Design and Analysis of Low Power Sensor

Nodes

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 343

Figure 1. Functional Block Diagram

the network gateway which can be an access point, a router or

even Lora WAN. ESP8266 is one such microcontroller that

contains network functionality through its robust TCP/IP

(Transmission Control Protocol / Internet Protocol) stack. It

can be inferred from Fig. 1. that the sensors, the computer

and the network gateway exchange data with the

microcontroller.

B. ESP8266 Wi-Fi Module

The ESP8266 Wi-Fi module can function as a

microcontroller. The ESP8266 board currently uses only

20% of its capability. The board is preprogrammed to operate

with an average current of 80 mA. However, current

measurements of lower orders of magnitude can also be

achieved if the board is programmed carefully so as to

consume power sparingly. Fig. 2 displays an ESP8266

NodeMCU module that contains several external

components to regulate power to the board.

The ESP8266 has the following features:

 General-purpose input/output (16 GPIO)

 Inter-Integrated Circuit (I2C)

 IS interfaces with DMA (sharing pins with GPIO)

 UART transmit-only UART on GPIO2)

 Pulse-width modulation

 Low-power highly-integrated Wi-Fi solution

Figure 2. ESP8266 NodeMCU Module

 Figure 3. ESP8266 Generic Module

The ESP8266 Generic module displayed in Fig. 3 uses bare

minimum components to power itself from a battery. It is

because of this reason that it is capable of consuming current

in the lower range of micro-amperes in deep-sleep mode as

compared to milliampere power consumption of the

NodeMCU module in the same deep-sleep mode.

III. RTC MEMORY

The RTC memory in the ESP8266 Wi-Fi module is

responsible for waking the ESP8266 from deep-sleep mode

after a predefined time interval has passed. This means that

even though the ESP8266 and most of its on board

components are not operational in deep-sleep mode, the RTC

memory does remain on and once the time interval defined

for deep-sleep has passed, the GPIO 16 pin on the ESP8266

sends a low signal to the RESET pin of the ESP8266 and

hence resets the module so that the entire algorithm can be

executed again. The RTC memory of the ESP8266 reserves

256 bytes for the system (system data) and 512 bytes for the

user (user data). So, in total, the RTC memory can store 768

bytes of data.

IV. THINGSPEAK CLOUD SERVER

A cloud server named ThingSpeak which is open source was

used for uploading sensor data. The http protocol was used to

transmit data sensed by sensors to this cloud server. The

variation in the values measured by the sensors can be

monitored by the user over a period of time. The user only

needs to create an account with the ThingSpeak service and

then create his/ her channel. A channel id is then issued to

the user to distinguish the channel from other channels.

Within the channel, the user can create a maximum of 8

fields that are associated with every sensor that is interfaced

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 344

with the microcontroller. The values measured by the sensors

are stored in these respective fields.

V. POWER SAVING TECHNIQUES

A few smart power saving techniques are discussed in the

subsequent subsections A, B and C.

A. Range Based Signal Transmission

From the Table 1, it can be observed that the transmission

power of the Wi-Fi module is between 14dBm and 20dBm

but the receiver sensitivity is as low as -91 dBm. So, when the

receiver is capable of receiving at such low power, then the

wifi signal transmission power of the module can be made

less depending on the distance of the gateway or standard

wifi router from the wifi module. For example, if the wifi

module i. e. the ESP8266 is in one room where a standard

wifi router is also placed. If Received Signal Strength (RSSI)

is strong from the router within that range, the ESP8266

exchanges data with the standard wifi router and while

communicating with the router, it transmits some of its wifi

signal power outside the room as well which is undesirable

since, power is being wasted in this manner. To solve this

issue, the ESP8266 needs to be programmed in such a

manner that the power of the signal going to the antenna

from the IC will be reduced. In this way if the power of the

signal that goes to the antenna that transmits is reduced, then

communication between ESP8266 and the standard wifi

router can be achieved by using the wifi power sparingly only

within that range and the RF signal strength won’t be strong

beyond that range.

 Table I. ESP8266 EMISSIONS

B. Making the sensor wake up every few hours

Naturally occurring phenomena is sensed by the sensors

interfaced with the ESP8266 wifi module, and this Wi-Fi

module transmits this data measured by sensors to the

internet via WiFi every 100 ms by default. When the physical

conditions that are being sensed by the sensor are

instantaneous and not abrupt as in temperature sensing

applications, still the sensor transmits the data which is

actually not required. Power is being wasted there. The

ESP8266 board can be programmed to wakeup every 2-hrs to

sense physical data and remain in sleep mode the remaining

time. The ESP8266 wifi module also has a deep sleep mode.

In order to reduce the current consumption to a few

micro-amperes when the board is in this mode, the ESP8266

has to be duty-cycled carefully so that the average current

over the entire cycle measures low as shown in Fig. 4

 Figure 4. Duty Cycling ESP8266

Let us assume that the battery supplying the ESP8266

NodeMCU module has a capacity C of 500 mA-hr, then:

 C = 500 mA-hr

 = 500mA * 3600secs

 = 1800000 mA-secs

(1)

When the ESP8266 NodeMCU WiFi module is transmitting

data to the internet via Wi-Fi, let’s assume that the active

state current (Iactive) is measured as 81.6 mA

Iactive = 81.6 mA

(2)

While the ESP8266 NodeMCU WiFi module is in deep-sleep

mode, let’s assume that the deep-sleep current (Ideepsleep)

measures as 11.1 mA.

 Ideep-sleep = 11.1 mA

1 cycle of current measurement contains T secs

 T = t1 + t2

 (3)

 T = 16 secs + 7200 secs = 7216 secs

Hence, the average current consumed in 1 cycle is:

Iaverage (mA.secs) = dt (4)

 =

 Iaverage (mA.secs) = 81.6 (16 – 0) + 11.1 (7216 – 16)

 = 81225.6 mA-secs

The average current in mA Iaverage(mA) is given by:

 Iaverage = (5)

 Iaverage =

Iaverage =

 Iaverage = 11.2563 mA

If the estimated life-span of the sensor node is denoted by LB

LB = (6)

LB =

 Physical

 Mode

 Transmission

 Power

 Reception

 Power

 802.11b + 20 dBm - 91 dBm

 802.11g + 17 dBm - 75 dBm

 802.11n + 14 dBm - 72 dBm

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 345

LB = 44.419 hrs

 = 1.85 days.

In this way, if we increase the sleep time of the ESP8266

NodeMCU module as well as ensure that the WiFi circuit of

the module is turned off while the interfaced sensors sense

natural phenomena, the average current over the entire cycle

can be reduced even further.

C. Restricting the beacon frames emitted by ESP8266

 The beacon frames that are emitted by the wifi module

actually are to only show the host that it is connected or in

physical terms to tell the host that it is alive and ready to talk

or communicate. These frames are transmitted periodically

(every 100ms) by access points (APs) and wifi modules to

announce the presence of LAN (this is in case of hosts). After

the host (standard wifi router) and the client (ESP8266 wifi

module) are connected to each other over the wifi network,

then the beacon frames are useless. Power is consumed due to

the transmission of these beacon frames. Hence, the

ESP8266 Wifi module should be programmed in such a way

that the beacon frames are transmitted by it every 2hrs. In

this way power can be reduced to a huge extent.

VI. SYSTEM OPERATION

 In Fig. 5 the basic system operation is depicted. The entire

system is powered by a battery and the output terminal of a

Passive Infrared Sensor (PIR) is connected to the ESP8266

WiFi module’s CHIP_ENABLE pin (CH_PD) as well as one

of the GPIO pins of the ESP8266 so that the status of motion

detected can be stored in a variable and sent to ThingSpeak

via WiFi and the Internet. Let’s call this node, Node 2. The

other sensor node (Node 1) is also an ESP8266 WiFi module

that is interfaced with an LM35 temperature sensor for

sensing variations in ambient temperature. The PIR sensor’s

input terminal is directly powered by the battery. If motion is

detected by the PIR sensor, then the output of the sensor goes

high and hence turns the enable pin high on the ESP8266

WiFi module that is named Node 2. The module executes all

the instructions that it was programmed to execute as long as

the enable pin on it is HIGH. After the PIR sensor’s output

goes low, the enable pin is pulled low of the ESP8266 and

hence, it cannot execute the instructions that are loaded onto

it. This is done to save power. It is necessary to ensure that

Wi-Fi is turned off during the initial phase of program

execution so as to avoid the large current spike that results as

the module tries to reconnect to an access point after it wakes

up from deep-sleep. The Wi-Fi circuitry had to be turned off

before the ESP8266 could activate the sensors that are

interfaced with its GPIO pins. After the sensors finish

Figure 5. Schedule Algorithm

measuring natural phenomena, they are turned off by the

ESP8266 throught the GPIO pins that they are interfaced

with. Now, the WiFi circuitry in the board can be signalled to

turn on. Before initiating an association with the WiFi access

point or router, the ESP8266 checks whether the WiFi

credentials of the access point it is supposed to connect to

exists in the Real Time Clock (RTC) memory or no. If the

Wi-Fi credentials do exist in the RTC memory, then the

Esp8266 passes these values to the WiFi router or access

point during the association period with WiFi andconnects to

the Wi-Fi access point in a quick fashion which takes barely

2 seconds to complete. If the ESP8266 reads that the RTC

data is invalid on the basis of a mismatch in the CRC32

(Cyclic Redundancy Check for 32 bits) or if it detects that the

RTC memory contains no Wi-Fi credentials stored in it, then

the ESP8266 tries a normal Wi-Fi association.

a) Normal Wi-Fi Association: In a normal Wi-Fi

association, the ESP8266 device tries to make a connection with an

access point. The access point and the ESP8266 module complete a

complex handshake procedure, wherein, th access point or router

issues the ESP8266 a unique IP Address via a process called

Dynamic Host Configuration Protocol. Even though this process

takes only 12 to 14 seconds to complete, in networking and wireless

technology parlance this is considered to be quite a lot of time.

b) Quick Wi-Fi Association: In a quick Wi-Fi association,

the procedure of initiating and completing a connection with the

Wi-Fi access point is not as lengthy as in the case of a normal Wi-Fi

connection. Firstly, the ESP8266 Wi-Fi module is configured with

the help of code, to have a static IP address. Because of this, the

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 346

access point or router doesn’t have to spend time in issuing the

ESP8266 Wi-Fi module an IP address. 10 to 12 seconds are saved in

this way. Hence, the time taken to make an association with the

Wi-Fi router or access point takes around 4 to 6 seconds and the

entire process from start of the algorithm right till the end when the

ESP8266 goes into sleep mode takes only 6 to 8 seconds on average.

In the context of wireless communication, time is energy.

c) Quicker Wi-Fi Connection with RTC:

Performing cyclic redundancy check on the data

stored in RTC memory is highly important in order

to maintain integrity of data. In other words, CRC

32 is a protocol that ensures that the data received

by RTC memory matches the data that was

transmitted by the ESP8266. As depicted in Fig. 5,

if the crc matches, then the RTC data is considered

valid and hence passed on to Wi-Fi, else, the RTC

memory is considered invalid or empty and a

normal slow Wi-Fi connection is established with

the wireless access point.

VII. RESULTS

As it is indicated from Fig. 6, the ESP8266 NodeMCU

module consumes (78 +- 0.62) mA of current in active mode.

The accuracy of the multimeter was considered which is ±

(0.8%+2dgts) on the 200mV range. The battery used to

power the ESP8266 NodeMCU board was a 9V eveready

battery that had a current capacity (C) of 700 mA.hr. From

Fig. 7 it is observed that this ESP8266 NodeMCU board

consumes (11 +- 0.088) mA in deep-sleep mode. This

amount of current is too high for low power applications. If

we substitute the values for Iactive and Ideep-sleep in Equation (4),

 Iaverage (mA.secs) = 78798.72 mA.secs OR 80069.28 mA.secs

Substituting Iaverage (mA.secs) in Equation (5) gives

Iaverage = 10.9397 mA OR 11.1161 mA

Substituting Iaverage in Equation (6) gives

LB = 63.987 hrs OR 62.972 hrs

Figure 6. ESP8266 Current Consumption in Active Mode

Figure 7. ESP8266 Current Consumption in Deep-Sleep Mode

 Table II. ESP8266 NodeMCU Current Consumption

This means the battery will survive for only over a day if we

use the ESP8266 NodeMCU module that consumes high

current even in deep-sleep due to the additional components

mounted on it like the AMS1117 voltage regulator and the

CP2102 USB to UART integrated chip. Hence, the ESP8266

bare bones (Generic ESP8266 12E) that has none of these

additional components mounted, was also tested to check if it

draws lower current compared to ESP8266 NodeMCU

module.

Figure 8. ESP8266 Generic Module Current Consumption in

Deep-Sleep Mode

 Table III. ESP8266 Generic Module Current Consumption

Operating
 Mode

 Current
Consumption

Duration
 (secs)

Average
Current
Iaverage

Expected
 Lifespan
(months)

Active 78 (mA) 3 <132.21
 (µA)

 > 7.35
DeepSleep < 100 (µA) 7200

As observed from Fig. 8, the multimeter doesn’t have enough

resolution to measure the low current drawn by the ESP8266

12E Generic module. Since it shows 0.0 mV across the 1 Ω

resistor, let’s presume that the maximum current it draws in

deep-sleep mode is 100 µA (since it doesn’t read as 0.1mV on

the multimeter which is equivalent to 100 µA). Substituting

Ideep-sleep = 100µA in Equation (4) gives a battery life of:

 LB = = 7.35 months

Operating
 Mode

 Current
Consumption
 (mA)

Duration
 (secs)

Average
Current
Iaverage

(mA)

Expected
 Lifespan
 (Hrs)

Active 78 +- 0.62 2 10.939
 Or
 11.116

62.987
 Or
62.972

DeepSleep 11 +- 0.088 7200

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCN06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 347

 Figure 9. Temperature Data uploaded to ThingSpeak

 Figure 10. PIR status uploaded to ThingSpeak

 ACKNOWLEDGMENT

The I am deeply thankful to my guide, Assistant Prof. Geeta

Shet for allowing me to carry out the project under her

supervision. She has supported me in times of difficulty. I

sincerely appreciate the encouragement extended to me by

the Head of the Department of Electronics &

Telecommunication, Prof (Dr.) Hassanali G. Virani and our

Principal, Dr. M. S. Krupashankara for allowing me to use

the resources of the college that were immensely useful in

carrying out the work related to my project. I also need to

thank my parents, family members, and all well wishers

along with the almighty without whom this work would not

have taken shape.

 REFERENCES

[1] Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “Toward

Ultra Low-Power Hardware Specialization of a Wireless Sensor Network

Node,” 2009 IEEE 13th International Multitopic Conference.

[2] Cuong M. Nguyen, Jeffrey Mays, Dakota Plesa, Smitha Rao, Minh

Nguyen, J.-C. Chiao, “Wireless Sensor Nodes for Environmental

Monitoring in Internet of Things,” IEEE MTT-S International

Microwave Symposium, pp. 1 – 4, 2015

[3] Leonardo Barboni, Maurizio Valle, “Experimental Analysis of Wireless

Sensor Nodes Current Consumption,” Second International Conference

on Sensor Technologies and Applications (sensorcomm 2008), pp. 401 –

406, 2008

[4] S. Rhee, D. Seetharam , S. Liu, “Techniques for minimizing power

consumption in low data-rate wireless sensor networks,” IEEE Wireless

Communications and Networking Conference (IEEE Cat.

No.04TH8733),vol.3, pp.1727 – 1731, 2004

[5] Alain Pegatoquet, Trong Nhan Le, Michele Magno, “A Wake-Up

Radio-Based MAC Protocol for Autonomous Wireless Sensor

Networks,” IEEE/ACM Transactions on Networking, vol.27, issue 1, pp.

56 – 70, 2019

[6] Fariborz Entezami, Christos Politis, “Deploying parameters of Wireless

Sensor Networks in test bed environment,” IEEE Wireless

Communications and Networking Conference Workshops (WCNCW),

pp.145–149,2014

http://www.jetir.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5373587

