Multi-level stable energy efficient clustering protocol using TABU technique in wireless sensor network: A Review

Tarun¹, Varsha Sahni², Abhishek Bharadwaj³ Abhinav Hans⁴
¹,⁴Assistant Professor, Lovely Professional University, Phagwara, Punjab, India
²,³Assistant Professor, CTIEMT, Jalandhar, Punjab, India

Abstract:- The most widespread technology growing day by day is WSNs. Inadequate battery source of sensor nodes, becomes the primary regions of research. Here, multi-level stable and energy efficient clustering protocols are studied, where network-grid construction is distributed in groups called cluster. In all clusters, some advance nodes and normal nodes deployed randomly and super nodes assigned to cover the different sensing area. Over the available WSN protocols, MSEEC has shown substantially effective results. However, other issues have been overlooked. A new improved method is introduced to solve the constraints. With the proposed strategy, the clustering and TABU search is possible to overcome the restrictions of the MSEEC routing protocol. The technology suggested exceeds the techniques available.

Keywords: Wireless sensor network, multi-level stable and energy efficient clustering protocol, tabu search, normal nodes, super nodes, advance nodes.

1. INTRODUCTION

Today's crest wireless sensor network is becoming common, as consumers want wireless connectivity regardless of location. Wireless sensor network of autonomous spatially dispersed sensors to track the atmospheric or physical conditions, for example, temperature, sound and pressure. In the case of environmental / landscape surveillance, sound detection, earthquake detection, military monitoring, inventory tracking and medical monitoring, the wireless sensor network should be able to provide strong, safe and reliable multicast connectivity. The most important components of sensors in WSNs are: a power component, processing component, sensing part and component for communication. Sensor component consists of sensor nodes (sensing the natural conditions and producing analog signals) and ADC, which transmits the analog signals provided by the sensors to the processing system. Signal processing and sensor nodes requires the processing portion which involves a microprocessor or microcontroller and a memory. Short distance radio communication channels are used to send and receive data. The power module contains batteries and GPS (to find the position of sensor node).

The WSN includes several sensor nodes and the analysis environment is focused on a Sink or Base Station (BS). Randomly positioned in the field, i.e. without preparation, sensor nodes must therefore be programmed in order to communicate with the entire network itself. The nodes submit the sensed information to the sink, processing the details. WSNs have the major role to play in transmitting beacons (node queries) to nodes. After the queries are issued from the base station, nodes send the data to BS. BS serves as an internet portal, e.g. data collection and delivery to consumers via the Internet is done by a base station.

Fig. 1. WSN’s communication architecture.
Characteristics

DSN positioning Sensor nodes are typically formed thickly also can have more magnitude than MANET.

Self-configurable Sensor nodes are typically used linearly and built autonomously for a communication network.

Battery in sensor nodes The battery-powered sensor nodes are normally installed in a rugged setting in which batteries are challenging to change or to give more power to the batteries.

Processing and power limitations and storage constraint Sensor nodes have very low space, storage and computational capacities.

Unpredictable sensor nodes Since SN may be physically compromised or weakened because they are put in harsh or aggressive environments.

Data redundancy Database Redundancy SN located near region of interest to function together for a normal sensing role in the most sensor network context. In fact, the knowledge detected by several SN’s has some degree of redundancy or consistency.

Many-to-one traffic pattern several traffic patterns are contained in many sensor network systems, so sensor node sensors switch from several source sensor nodes to a specific BS.

Application specific For a given use, a network of sensors is typically planned and configured. The architecture requirements of a sensor network have changed with its implementation.

Frequent topology change It occurs because of reasons like the channel fading, node addition, node damage, node failures, node energy depletion.

1.1 Advantages

- Without fixed assets, network layout can be achieved.
- Ideal for remote locations like plateau, across the sea, farmland or deep forests.
- Flexible when an external workstation is needed when an ad hoc condition exists.
- Price is lower for application.

1.2 Disadvantages

- This network is not as secure because hackers may reach the point of access and collect all the info.
- Higher wireless network latency in contrast with a wired network.
- Design more complex than wired.
- Good for environment impact (walls, microwaves, large distances, etc.).

2. M-SEEC PROTOCOL

2.1 Multi-level stable and energy efficient clustering protocol

M-SEEC relies on the cluster-divided network layout. Cluster has an advanced node with regular nodes that are randomly distributed throughout the Cluster inside the SEEC Protocol. This protocol also called three level heterogeneous routing protocols. This protocol has been extended with the help of SEEC routing protocol.

Fig 2. Distribution of the nodes in M-SEEC

The most strong supernodes in M-SEEC are designated for the remote sensing regions. In form of sensing, accumulation or passage to the discharge (Base Station), each category of nodes has its position. Nodes are deployed randomly in the field with a different group of energy values. The network consists of clusters and each cluster has big super nodes, advanced nodes and regular nodes. In M-SEEC, MSN is the percentage of all β-folding more energy-equipped nodes than regular
normal nodes (NNs), defined as super nodes (SN). Throughout the 3 stage heterogeneous networks, total initial energy is provided:

\[E_{total} = n \cdot E_0 + MAN \cdot (\alpha + 1) \cdot E_0 + Msn \cdot (1 + \beta) \cdot E_0 \]

The 3-level M-SEEC therefore has \((\alpha \cdot MAN + \beta \cdot Msn)\) times more energy.

![Radio energy dissipation model](image)

Fig. 3 Radio energy dissipation model [12]

The energy used by the radio model for transmitting \(L\)-bit message over the distance \(d\) is given by

\[E_T(L, d) = \begin{cases} L \cdot E_{elec} + L \cdot e_{ls} \cdot d^2 & \text{if } d \leq d_0 \\ L \cdot E_{elec} + L \cdot e_{np} \cdot d^4 & \text{if } d > d_0 \end{cases} \]

3 Tabu Technique

Tabu search is also considered a common usage of routine enhancements including militia. TS is focused on concepts that can be found in growing area of computer science and development. Many researchers performed TS even easier. TS is true to the boundaries of the quest for specific areas. Such shortcomings affect memory mechanisms and can be called intelligent qualifications. TS employs approachable analysis in tandem with a shameful political request to include other details rather than an truthful potentially successful response. Intelligence requires adaptive memory with sensitive discovery. Consider this case where, when you step up a hill, you recall the system features (adaptive memory) and make pragmatic decisions (reactive discovery) due to the peak or fall. TS has a guideline that makes it distinct from different types of quest. This is an elastic memory that varies significantly from a static branch memory and protected processes. The consistency, recurrence, frequency and effect of four kinds of memory dimensions found at Tabu Searcher. TS demands a switch to a low-value degradation neighbor.

Algorithm of Tabu search

Step 1: Initialization

a) Select a starting solution \(y^{now}\) ∈ \(y\).

b) \(y^{best} = y^{now}\), \(best_{cost} = c(y^{best})\).

c) Set the history record \(H\) empty.

Step 2: Choice and termination

Determine candidate_N \((y^{now})\) as a subset of N\((H, y^{now})\).

Select \(y^{next}\) from candidate_N \((y^{now})\) to minimize \(c(H, y)\).

Terminate by a chosen iteration cut-off rule.

Step 3: Update

Re-set \(y^{now} = y^{next}\).

If \(c(y^{now}) < best_{cost}\), perform step 1 (b).

Update the history record \(H\).

Return to step 2.

3.1 Tabu Search Terms

Short-term memory: It has restricted access time and storage space capability. STM is used to avoid the reversal of moves and cycling.

Medium-term: a set of laws designed to support the market in the quest room in attractive regions.

Long-term: Rules to encourage flexibility in the cycle of search (i.e. with regard to resets while searches are in a plateau or sub-optimal dead-end).

Move: A adjustment created to an answer. native explore can be inclined to go to antecedently visit solutions additional oft condition the amount of tabu moves area unit comparatively little. In case of the opposite, if the number of tabu movements is large, the search becomes smaller probable to seek out elegant native optima owing to lack of easy to get to moves.

Tabu list: TS follows the tabu list definition where tabu motions or activity unit attributes are identified.
Aspiration: Some tabu moves found to be compelled to be unnoticed so that to get higher native solutions. Such type of moves area unit known as aspired moves. “Improved-best” and “aspiration by evade criteria” area unit example.

Probabilistic taboo search: None like several TS application that have settled moves, probabilistic TS allotted the profanity for every move (Glover & lake, 1997). Recency-based memory: It is also a type of memory that keep track of resolution attribute that have modified throughout the current long-ago.

Critical event memory: A type of memory which tracks the prevalence of major questions and provides a related combination of these events.

Explicit memory: Such type of memory wants extreme address, and it expanded the region for the period of this search. Express recollection increase.

Tabu-active: Attributes so as to amendment as a answer of a travel. These attribute is also utilized in a recency-based memory known as “tabu-active” for a such variety of iteration.

Attributive memory: Report data concerning resolution attribute instead of concerning result. In the TSP, guide of tour is also use as attributes. Attributive and express recollections balance one another. Attributive memory eliminates adverse bound movement by the area scale.

Tabu Thresholding: A technique that join prescription of strategic oscillation by means of applicant list methods. Thresholding strategies direct avariciously explore look for area in an exceedingly non monotonic manner.

Path relinking: It generates the new solutions by exploring trajectory that attaches best solutions by generate a path within the area.

Tabu tenure: Tabu list size or earlier approach to be retained. Effective taboo tenures depend on a transport case’s proportions.

3.1.1 Advantages of the Algorithm

1) Tabu also makes solution that has no more improvement.

2) Can be really growing, repeat.

3) The global equilibrium has not been identified.

4. CONCLUSION

A variety of protocols were introduced to improve energy efficiency. Tabu MSEEC is the suggested strategy that enhances the method of selection of the cluster head and guarantees a reliable and effective network that has a long existence. This approach is built in the MATLAB toolbox for data analysis. This research has not been done for 3D WSNs, but in potential studies, we’ll broaden the methods suggested for 3D WSNs.

5. REFERENCES

