A Theoretical Study of Kapur’s Measures of Entropy

Deepak Kumar, Kulwinder Singh and Vishal Rana

“Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Abstract

This paper concerned with the study of various entropy measures. The entropy measures can be broadly categorized into two sections namely additive measures and non-additive measures. The present manuscript is divided into three sections. In the first section, introduction of entropy measures and definition of entropy is given. The second section deals with the various requirements of measures of entropy. In the third section, the existing additive measures of entropy known as Kapur’s measure have been studied and all the requirements for the measures have been verified.

1) Introduction

Information theory was created by C. Shannon in 1948 so as to address the hypothetical inquiries in media communications. Entropy measure the arbitrariness of a discrete random variable. It can likewise be thought of as the uncertainty about the result of an experiment, or the rate of information generation by playing out the experiment repeatedly. The idea of entropy was acquainted with giving a quantitative measure of uncertainty.

Shannon [1] determined the measure \(H(P) = - \sum_{i=1}^{n} p_i \ln p_i\) for the uncertainty of a probability distribution \((p_1, p_2, \ldots, p_n)\) and defined it as entropy. The information theoretic entropy can be estimated as far as its error from the uniform distribution which is the unsure distribution. Following the Shannon’s measure (SM) of entropy, countless measures of information theoretic entropies have been determined.

As described by Renyi in paper [2] entropy of order \(\alpha\) is \(H_{\alpha}(P) = \frac{1}{1-\alpha} \left[\sum_{i=1}^{n} p_i^{\alpha} / \sum_{i=1}^{n} p_i\right]\), \(\alpha \neq 1, \alpha > 0\), which speaks to a group of measures which incorporates Shannon’s entropy as a restrictive case as \(\alpha \rightarrow 1\). Later, Kapur [3] summed up Renyi’s measure (RM) and gave a measure of entropy of order ‘\(\alpha\)’ and ‘\(\beta\)’ as

\[H_{\alpha,\beta}(P) = \frac{1}{1-\alpha} \ln \left[\sum_{i=1}^{n} p_i^{\beta+\alpha-1} / \sum_{i=1}^{n} p_i^{\beta}\right], \]

\[\beta + \alpha - 1 > 1, \alpha \neq 1, \alpha > 0, \beta > 0, \]
This decreases to (RM) when $\beta=1$, to Shannon measure, when $\beta = 1$, $\alpha \to 1$. When $\beta = 1$, $\alpha \to \infty$, it gives the measure $H_\infty(P) = -\ln P_{max}$.

Havrada and Charvat[4] defined the first non-additive measure of entropy specified by

$$H^\alpha(P) = \frac{\left[\sum_{i=1}^{n} p_i^\alpha\right] - 1}{2^{1-\alpha} - 1}, \alpha \neq 1, \alpha > 0.$$

To be predictable with Renyi's measure and for numerical comfort, it is utilized in changed structure as

$$H^\alpha(P) = \frac{1}{1-\alpha} \left[\sum_{i=1}^{n} p_i^\alpha - 1\right], \alpha \neq 1, \alpha > 0$$

Behara and Chawla[5] characterized the non additive γ-entropy as

$$H_\gamma(P) = \frac{1 - \left(\sum_{i=1}^{n} p_i^{1/\gamma}\right)}{1 - 2^{-\gamma}}, \gamma > 0, \gamma \neq 0$$

$$= \frac{1}{1 - 2^{-\gamma - 1}} - \frac{1}{1 - 2^{-\gamma - 1}} \left[\sum_{i=1}^{n} p_i^{1/\gamma}\right]$$

Definition 1: The entropy is defined as lack of order or predictability, gradual decline into disorder. In thermodynamics, it is characterized as the thermodynamic amount speaking to the inaccessibility of a system’s thermal energy for transformation into mechanical work, frequently translated as the level of confusion or arbitrariness in the system.

Examples: Ice softening, salt or sugar dissolving, making popcorn and bubbling water for tea are process with expanding entropy.

1.1) **Requirements of Measure of Entropy**

Let the probabilities of an possible outcomes $A_1, A_2, ... A_n$ of an experiment be respectively $p_1, p_2, ..., p_n$ offering ascend to the probability distribution $P = (p_1, p_2, ..., p_n)$;

$$\sum_{i=1}^{n} p_i = 1, p_1 \geq 0, p_2 \geq 0, ..., p_n \geq 0$$

There is uncertainty with regards to the result when the experiment is done. Any measure of this uncertainty should satisfy the following requirements:

1) It ought be a function of $p_1, p_2, ..., p_n$, so that we may write down it as

$$H(P) = H_n(p) = H_n(p_1, p_2, ..., p_n)$$
2) It ought be uniform function of \(p_1, p_2, \ldots, p_n \) i.e. little change in \(p_1, p_2, \ldots, p_n \) should cause a little change in \(H_n \).

3) It ought not alter when the outcomes are rearranged among themselves i.e. \(H_n \) ought to be ordered function of its contentions.

4) It ought not change if an unthinkable result is added to the probability scheme i.e.

\[
H_{n+1}(p_1, p_2, \ldots, p_n, 0) = H_n(p_1, p_2, \ldots, p_n)
\]

5) It ought be minimum and possibly zero at the point when there is no uncertainty about the result.

Along these lines, it ought to disappear when one of the results is sure to occur so that

\[
H_n(p_1, p_2, \ldots, p_n) = 0, \sum_{i=1}^{n} p_i = 1, \sum_{j=1}^{m} p_j = 1; j \neq i, i = 1, 2, \ldots, n
\]

6) It ought to be greatest when there is a most extreme uncertainty which rises when the results are similarly likely so that \(H_n \) should be maximum when \(p_1 = p_2 = \ldots = p_n = 1/n \).

7) The greatest estimation of \(H_n \) should increment as \(n \) increments.

8) For two self-determining probability distribution

\[
P = (p_1, p_2, \ldots, p_n), Q = (q_1, q_2, \ldots, q_n), \sum_{i=1}^{n} p_i = 1, \sum_{j=1}^{m} q_j = 1
\]

The uncertainty of the combined scheme \(P \cup Q \) ought to be their addition of their vulnerabilities i.e. \(H_{nm}(P \cup Q) = H_n(P) + H_m(Q) \), where if \(A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_n \) are the outcomes of \(P \) and \(Q \) then the outcomes of \(P \cup Q \) are \(A_i, B_j \) with probabilities \(p_i q_j (i = 1, 2, \ldots, n, j = 1, 2, \ldots, m) \).

2) Main Section

In this section, we have presented a discussion on the existing additive measure of entropy called

Kapur’s Measure of Entropy and verified all the requirements for the existing measure:

Kapur’s[3] measure of entropy of order \(\alpha \) and type \(\beta \) is specified by

\[
H_{\alpha, \beta}(P) = \frac{1}{1 - \alpha} \ln \frac{\sum_{i=1}^{n} p_i^{\beta + \alpha - 1}}{\sum_{i=1}^{n} p_i^{\beta}}, \quad \alpha \neq 1, \beta + \alpha - 1 > 0, \beta > 0,
\]

\[
= \frac{1}{1 - \alpha} \ln \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} - \frac{1}{1 - \alpha} \ln \sum_{i=1}^{n} p_i^{\beta} - (1)
\]

(i) Equation (1) is a function of \(p_1, p_2, \ldots, p_n \).

(ii) As logarithmic function is a uniform function. Therefore, \(H_{\alpha, \beta}(P) \) is a uniform function of \(p_1, p_2, \ldots, p_n \). e. little change in \(p_1, p_2, \ldots, p_n \) should cause a little change in \(H_{\alpha, \beta}(P) \).
(iii) $H_{\alpha, \beta}(P)$ is a permutationally uniform. It does not alter if $p_1, p_2, ... p_n$ are reordered amongst themselves.

(iv) The entropy does not alter by the addition of anot possible event i.e. of an event with zero probability. Thus,

$$H_{\alpha, \beta}(p_1, p_2, ... p_n, 0) = \frac{1}{1-\alpha} \ln \left[\sum_{i=1}^{n} p_i^{\beta + \alpha - 1} + 0^{\beta + \alpha - 1} \right] - \frac{1}{1-\alpha} \ln \left[\sum_{i=1}^{n} p_i^{\beta} + 0^\beta \right]$$

$$= \frac{1}{1-\alpha} \ln \left[\sum_{i=1}^{n} p_i^{\beta + \alpha - 1} \right] - \frac{1}{1-\alpha} \ln \left[\sum_{i=1}^{n} p_i^{\beta} \right]$$

$$= H_{\alpha, \beta}(p_1, p_2, ... p_n)$$

Hence the required result.

(v) There are n degenerate distributions

$$\Delta_1 = (1,0, ... 0)$$

$$\Delta_2 = (0,1, ... 0)$$

...

...

...

$$\Delta_n = (0,0, ... 1),$$

and for every one of these $H_{\alpha}(P) = 0$, we imagine that for every one of these distribution, the uncertainty should be zero. Kapur satisfies this condition as $\ln 1^{\beta + \alpha - 1}$ and $\ln 1^\beta$ is equal to $\ln 1 = 0$.

(vi) We use Lagrange’s way to raise the entropy subjected to $\sum_{i=1}^{n} p_i = 1$. In this case Lagrangian is

$$L = \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} - \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\beta} + \lambda \left[\sum_{i=1}^{n} p_i - 1 \right]$$

Taking derivative partially w. r. t. $p_1, p_2, ... p_n$, we get

$$\frac{\partial L}{\partial p_1} = \frac{1}{1-\alpha} \frac{(\beta + \alpha - 1)}{\sum_{i=1}^{n} p_i^{\beta + \alpha - 1}} p_1^{\beta + \alpha - 2} - \frac{1}{1-\alpha} \frac{\beta p_1^{\beta - 1}}{\sum_{i=1}^{n} p_i^{\beta}} + \lambda$$
\[
\frac{\partial L}{\partial p_2} = \frac{1}{1 - \alpha} \left(\beta + \alpha - 1 \right) \sum_{i=1}^{n} p_i^{\beta + \alpha - 2} p_2^{\beta + \alpha - 2} - \frac{1}{1 - \alpha} \beta p_2^{\beta - 1} + \lambda
\]

Substituting \(\frac{\partial L}{\partial p_1} = 0, \frac{\partial L}{\partial p_2} = 0, \ldots, \frac{\partial L}{\partial p_n} = 0, \) the above system of equations reduces to

\[
\frac{1}{1 - \alpha} \left(\beta + \alpha - 1 \right) \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} p_i^{\alpha + \beta - 2} - \frac{1}{1 - \alpha} \beta p_1^{\beta - 1} = \ldots
\]

\[
= \frac{1}{1 - \alpha} \left(\beta + \alpha - 1 \right) \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} p_i^{\alpha + \beta - 2} - \frac{1}{1 - \alpha} \beta p_2^{\beta - 1} = \ldots
\]

\[
\therefore p_1^{\beta - 1} \left[\frac{1}{1 - \alpha} \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} p_1^{\alpha - 1} - \frac{1}{1 - \alpha} \beta p_1^{\beta - 1} \right] = p_2^{\beta - 1} \left[\frac{1}{1 - \alpha} \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} p_2^{\alpha - 1} - \frac{1}{1 - \alpha} \beta p_2^{\beta - 1} \right] = \ldots =
\]

\[
\therefore p_n^{\beta - 1} \left[\frac{1}{1 - \alpha} \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} p_n^{\alpha - 1} - \frac{1}{1 - \alpha} \beta p_n^{\beta - 1} \right] = \ldots =
\]

The equality in the above relation holds if

\[
p_1^{\beta - 1} = p_2^{\beta - 1} = \ldots = p_n^{\beta - 1} \quad \text{and}
\]

\[
p_1^{\alpha - 1} = p_2^{\alpha - 1} = \ldots = p_n^{\alpha - 1} \quad \text{which is possible if}
\]

\[
p_1 = p_2 = \ldots = p_n
\]

But \(\sum_{i=1}^{n} p_i = 1 \)

Therefore, \(np_1 = 1 \)

\[
\therefore p_1 = \frac{1}{n}
\]

\[
\therefore p_1 = p_2 = \ldots = p_n = \frac{1}{n}
\]

In order to prove that this is the point of maximization, we shall consider the case \(H_{\alpha,\beta}(p_1, p_2) \) subject to \(p_1 + p_2 = 1 \) and assume that \(\alpha = 3 \neq 1, \beta = 2 > 0, \alpha + \beta - 1 = 3 + 2 - 1 = 4 > 0 \)
Thus, \(H_{\alpha,\beta}(p_1, p_2) = \frac{1}{2} \ln \sum_{i=1}^{2} p_i^4 + \frac{1}{2} \ln \sum_{i=1}^{2} p_i^2 \) subjected to condition \(p_1 + p_2 = 1 \)

In this case, Lagrangian is

\[
L = \frac{1}{2} \ln (p_1^4 + p_2^4) + \frac{1}{2} \ln (p_1^4 + p_2^4) + \lambda(p_1 + p_2 - 1) \quad \text{where} \quad \Psi = p_1 + p_2 - 1
\]

Thus, \(\frac{\partial L}{\partial p_1} = \frac{-2p_1^3}{(p_1^4 + p_2^4)} + \frac{p_1}{(p_1^2 + p_2^2)} + \lambda \)

\[
\frac{\partial L}{\partial p_2} = \frac{-2p_2^3}{(p_1^4 + p_2^4)} + \frac{p_2}{(p_1^2 + p_2^2)} + \lambda
\]

\[
\frac{\partial L}{\partial \lambda} = p_1 + p_2 - 1
\]

Equating \(\frac{\partial L}{\partial p_1} = 0 \) and \(\frac{\partial L}{\partial p_2} = 0 \) and \(\frac{\partial L}{\partial \lambda} = 0 \), we get \(p_1 = p_2 = \frac{1}{2} \)

Now, \(\frac{\partial^2 L}{\partial p_1^2} = -2\left[\frac{(p_1^4 + p_2^4)}{2} \right] + \frac{(p_1^4 + p_2^4)}{2} \quad \text{where} \quad \frac{\partial \Psi}{\partial p_1} = 1 \) and \(\frac{\partial \Psi}{\partial p_2} = 1 \)

At \(p_1 = p_2 = \frac{1}{2} \)

\[
\frac{\partial^2 L}{\partial p_1 p_2} = -1, \quad \frac{\partial^2 L}{\partial p_2 p_1} = \frac{1}{2}, \quad \frac{\partial^2 L}{\partial p_1^2} = -1, \quad \frac{\partial \Psi}{\partial p_1} = 1, \quad \frac{\partial \Psi}{\partial p_2} = 1
\]

2nd order condition is

\[
|H_2| = \begin{vmatrix}
0 & \Psi_1 & \Psi_2 \\
\Psi_1 & L_{11} & L_{12} \\
\Psi_2 & L_{21} & L_{22}
\end{vmatrix}
\]
\[
\begin{vmatrix}
0 & 1 & 1 \\
1 & -1 & 1/2 \\
1 & 1/2 & -1
\end{vmatrix}
= 3 > 0
\]

So, L has maximum value at \(p_1 = \frac{1}{2}, p_2 = \frac{1}{2} \).

On generalizing it, we get

\[
L = \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} - \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\beta} + \lambda [\sum_{i=1}^{n} p_i - 1]
\]

when \(\alpha \neq 1, \beta > 0, \beta + \alpha - 1 > 0 \) has maximum value at \(p_1 = p_2 = \cdots = p_n = \frac{1}{n} \).

(vii) The maximum value of \(H_{\alpha,\beta}(P) \) is given by

\[
H_{\alpha,\beta}(P) = \frac{1}{1-\alpha} \ln \frac{\sum_{i=1}^{n} \left(\frac{1}{n} \right)^{\beta + \alpha - 1}}{\sum_{i=1}^{n} \left(\frac{1}{n} \right)^{\beta}}
\]

Thus, there ought be an increase in maximum uncertainty when more outcomes are possible.

(viii) Let \(P = (p_1, p_2, \ldots p_n) \) and \(Q = (q_1, q_2, \ldots q_n) \) be two self-determining probability distribution such that \(\sum_{i=1}^{n} p_i = 1 \) and \(\sum_{j=1}^{n} q_j = 1 \)

\[
H_{nm}(P \cup Q) = \frac{1}{1-\alpha} \ln \frac{\sum_{j=1}^{m} \sum_{i=1}^{n} p_i^{\beta + \alpha - 1} q_j^{\beta + \alpha - 1}}{\sum_{j=1}^{m} \sum_{i=1}^{n} p_i^{\beta} q_j^{\beta}}
\]

\[
= \frac{1}{1-\alpha} \ln \frac{\sum_{i=1}^{n} p_i^{\beta + \alpha - 1} \sum_{j=1}^{m} q_j^{\beta + \alpha - 1}}{\sum_{i=1}^{n} p_i^{\beta} \sum_{j=1}^{m} q_j^{\beta}}
\]

\[
= \frac{1}{1-\alpha} \ln \frac{\sum_{i=1}^{n} p_i^{\beta + \alpha - 1}}{\sum_{i=1}^{n} p_i^{\beta}} + \frac{1}{1-\alpha} \ln \frac{\sum_{j=1}^{m} q_j^{\beta + \alpha - 1}}{\sum_{j=1}^{m} q_j^{\beta}}
\]
\[= H_n(P) + H_m(Q) \]

Thus, \(H_{nm}(P \cup Q) = H_n(P) + H_m(Q) \)

For two self-determining distributions, the entropy of the combined distribution is the addition of the entropies of the two distributions which is the desirable property and this is called the additive property of the measure of entropy.

Remark: Kapur’s measure of entropy of order \(\alpha \) and type \(\beta \) is specified by

\[H_{\alpha,\beta}(P) = \frac{1}{1 - \alpha} \ln \frac{\sum_{i=1}^{n} p_i^{\beta + \alpha - 1}}{\sum_{i=1}^{n} p_i^\beta}, \alpha \neq 1, \beta > 0, \beta + \alpha - 1 > 0 \]

Case(i) When \(\beta = 1 \), we get

\[H_{\alpha,1}(P) = \frac{1}{1 - \alpha} \ln \frac{\sum_{i=1}^{n} p_i^\alpha}{\sum_{i=1}^{n} p_i}, \]

which is Renyi’s measure of entropy.

Case(ii) When \(\beta = 1 \) and \(\alpha \to 1 \), we get \(\sum_{i=1}^{n} p_i \ln p_i \),

which is the SM of entropy.

3) CONCLUSION

In the present manuscript, we have verified the various requirements for the existing additive measure of entropy and studied about the Kapur’s Measure of Entropy to answer the theoretical questions in telecommunications. The concept was of transferring maximum information through a noisy channel with negligible error. But there were some limitations of his theory. Thus, many researchers gave their measures to increase the efficiency of transferring information with minimized loss of energy and reducing the error rate of data.

REFERENCES

