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ABSTRACT  
In the present paper phase velocities and attenuation coefficients of two dispersive waves have been explored. The 

viscoelastic media considered to be homogenous, isotropic rotating Kelvin-Voigt type. The secular equation being 

complex quadratic equation provides us two roots that can be connected with two dispersive waves, which are found 

to attenuating in existing media. The numerical illustrations and graphical presentation have been carried out for 

copper material with help of MATLAB code. The present outcomes are advantageous in applications of geophysics. 

 

     1. INTRODUCTION 

 

Casula and Carcione [1] studied wave propagation in the generalized mechanical model analogies of linear 

viscoelastic behaviour. The theory of thermo-viscoelasticity and the solution of boundary value problems 

were investigated by Biot [2, 3]. Auriault [4] and Sharma et. al [5] studied effect of rotation on the body 

wave in terms of ratio of wave frequency to angular frequency in elastic and viscothermoelastic media 

respectively. An analysis of waves in viscoelastic media structure such as anisotropic, half-space and for 

Rayleigh and Lamb waves, have been reported in literature [6-11].  

In present paper, the analytical expressions of various characteristics of waves have been obtained 

for homogenous isotropic rotating Kelvin-Voigt viscoelastic media. Hence, system of equations with 

complex coefficients has been solved to obtain the solutions of phase velocity as well as attenuation 

coefficients.      

 

2. PROBLEM FORMULATION 

 

A homogenous isotropic rotating infinite Kelvin-Voigt type viscoelastic medium with uniform angular 

velocity 


  , which is rotating about z axis, has been considered. The basic governing equations [11] 

after including the centripetal forces as well as Coriolis forces, in absence of body forces as well as heat 

sources are given below  
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where derivative with respect to time has been used as superposed dot and 

http://www.jetir.org/
mailto:sandeep.14278@lpu.co.in


© 2019 JETIR February 2019, Volume 6, Issue 2                                                      www.jetir.org (ISSN-2349-5162) 

JETIREL06051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 266 
 

   
zyx uuutzyxu ,,,,, 



 

displacement vector
 

,
 

Lame’s parameter
 

0  and 1  
Viscoelastic relaxation time

 


 Density

 

eC  
specific heat at fixed value of  strain

 

T  
Linear thermal expansion coefficient 

 

 

Non-dimensional quantities are defined as below 
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The characteristic length is represented by l , the wave velocities are 1c  and 2c  respectively. Using 

quantities (3) in equation (1), we obtain (primes being suppressed for convenience) 
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3. DISPERSIVE EQUATIONS AND THEIR SOLUTION  

 

Considering the direction of rotation along z axis i.e k̂


. Therefore, 


u  is collinear to 



 
Hence, 

analysis of displacements carried out in xy plane, which will remain fixed along z axis. Considering 
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 and applying consequently on equation (4) which yields the following 

differential equations which are coupled in terms of    and 3  as 
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Considering the waves propagating in x direction as normal mode form given below  
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3213     tkxeBBB                                                                                (7) 

Using Normal mode solution (7) in equations (5) - (6), yields   
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The non-trivial solution system of equations (8)-(9) for 
1B  and 2B  in view of existing condition yields the 

following dispersion equation  
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Here   2,1,2 ii  
are the zeros of the quadratic equation 
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  where      is known as Kibel number  and kv   is the phase velocity.     

For 1 , 0ˆ P and equation (11) provides us  
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On solving above equations, we obtained the following roots  
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Hence the following roots are associated with the complex roots 2,1,2 ii    expressed in the form as 
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The two different sets (15), the solution of complex phase velocities yields the two distinct types of waves 

in viscoelastic materials.    

We write 

2,1,111   jQVv jjj                                                                                                 (16) 
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Where 
jV represents the phase speed and 

jQ  defines the attenuation coefficient. With help of relation (16), 

the equation (15) provides 
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in case of  1   

For non-zero value of angular frequency, the QL-wave and QT-wave are coupled waves. The amplitude 

ratios are expressed below 
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         4.NUMERICAL ILLUSTRATIONS AND GRAPHICAL PRESENTATION  

The numerical illustrations and graphical presentations have been carried out for Copper material [5] 

whose physical data is given below 

10102.8   N m-2, 10102.4   N m-2, 310950.8  Kg m-2, 13
10 108831.6  s. 

 
 

http://www.jetir.org/


© 2019 JETIR February 2019, Volume 6, Issue 2                                                      www.jetir.org (ISSN-2349-5162) 

JETIREL06051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 269 
 

 

 

Fig. 1 represents profile of velocity of quasi-longitudinal (QL) wave attains resonance for equal value of 

wave and angular frequencies. Initially value increases to attain maximum value followed by decrease in 

value to attain stable value for 3   and the  behaviour of QT-wave, which will increase value of ratio of 

wave frequency and angular frequency and finally approaches to stable value   for its large values. 

                      Fig. 2, reveals that due to viscous property in addition to elastic behaviour, the 

attenuation coefficient shapes of quasi-longitudinal and quasi transverse waves. As per analytical results 

the relation of phase speed and attenuation coefficients, we obtained the maximum values of attenuation 

coefficients whereas minimum values of phase velocities and at equal value of wave frequency phase 

velocity obtained maximum values then attenuation reduces to zero for quasi-longitudnal wave. In case of 

QT-wave, it has been observed that the attenuation profile reduces to attain minimum value at point the 

point whenever wave frequency is twice of angular frequency and then rises with increasing value of ratio 

of wave frequency to angular frequency.  

 

CONCLUSION 
 

The phase velocity in form of dimensionless quantity, suffers resonance for quasi-longitudinal wave for the 

equal vales of wave frequency and angular frequency i.e. Kibel number approaches to value equal to unity 

and for quasi-transverse (QT) wave due to energy dissipation in a homogenous isotropic rotating 

viscoelastic media attains increases in magnitude in comparison of elastic media. 
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