Research on Industry 4.0- Human Factor, Technology and Materials

Sayantan Bhattacharya, Saroja Gupta

Abstract:
The fourth industrial revolution is a most important part of the development of the world as it changes the role of human in operation systems. Industry 4.0 are becoming more prevalent in the production and logistics. Industrial revolution growth has to be increased but regarding the perspective of economics, environmental and social sustainability. We studied how to adoption of different industry 4.0 technologies is associated with the expected for product, operation and side-effect aspects. Here review paper on industrial revolution with impact of material and by discussing the real expectation on the future performance of the industry when implementing new technologies as well as the paper concludes with the future research direction on human factor in industry 4.0.

Introduction:
In 18th century, in the worldwide industrial growth started. [1] Industrial revolution are often framed in a technological perspective: The 1st industrial revolution relating to stream powered systems, 2nd revolution to the use of electrically powered systems and the 3rd to the adoption of information technology and automation. 4th evolution refers to the digitalization and integration of information technologies including application such as Internet of Things(IoT).[2-9]

1. **Fourth industrial evolution (industry 4.0):** Industry 4.0 is started in 21st century in developed countries, where the revolution of industry already mature regarding ICT usage and automation, the two concepts of the 3rd revolution that converge in the industry 4.0. Industry 4.0 connects with IoT, Cloud computing, Big data, Simulation, Augmented reality, Autonomous robot and Cyber security.[2-9]

2. **Materials impact on industry 4.0:** Materials are major impact of the industrial revolution, as per the industry1.0 iron is obtained by melting ores. Properties of iron are a transition metal. In textile industry, cotton materials make a transition.[fig1]
In Industry 2.0 transition impact by Electrical Power Generation. Electrical Power Generation, Transmission and consumption are copper and Aluminium is important material on Industry 2.0 revolution. Copper atomic structure is shown in [Fig. 2]. Copper is a transition metal. Copper atomic weight is 63.56, melting point is 108.62 °C, 1357.77 K, boiling point is 2560 °C, the number of electrons and protons is 29 and neutrons are 34.[10]
In Industry 3.0 transition technology is Programmable Integrated Circuit. The integrated circuit is manufacture by Semiconductor material [fig.3]. The semiconductor material is a partial conductor. Silicon and germanium is an example of semiconductor material.[11]

Figure 3. silicon and atomic structure

In industry 4.0 the nanomaterials are the transition materials. Nanomaterials have extremely small size which has at least one dimension 100nm or less [fig.4][11]

Figure 4. types of nanomaterials
3. **Technologies and expected benefits:**

The technologies of Industry 4.0 adopted by the industrial sector and benefits expected by industrial sector that are applying these technologies as shown in [table1]. the Industry 4.0 technologies are represented by 9 technologies and the expected benefits by 14 main benefits aligned with those highlighted in the literature.\[^{12}\] the percentage of companies in each industrial sector that indicated the adoption of a specific technology and the expectation for a specific benefit. Therefore, our study considers the analysis at the industrial sector level. Besides these variables, we also included two dummies as potential control variables in order to represent the three levels of technology intensity of the 27 industrial sectors under analysis (low, medium and high).

Technologies and expected benefits considered in the research model:

<table>
<thead>
<tr>
<th>Technologies (Independent Variables)</th>
<th>Expected benefits (Dependent variables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated engineering systems [ENG_SYS]</td>
<td>Y2: Optimize automation processes1</td>
</tr>
<tr>
<td>Digital automation with sensors [SENSORING]</td>
<td>Y3: Increase energy efficiency1</td>
</tr>
<tr>
<td>Digital Product-Services [DIGITAL_SERV]</td>
<td>Y5: Improve decision-making process1</td>
</tr>
<tr>
<td>Additive manufacturing [ADDITIVE] Cloud services [CLOUD]</td>
<td>Y6: Reduction of operational costs Y7: Increase productivity</td>
</tr>
<tr>
<td></td>
<td>Y8: Increase worker safety1</td>
</tr>
<tr>
<td></td>
<td>Y9: Create new business models1 Y10: Reduction of product launch time Y11: Improving of sustainability</td>
</tr>
<tr>
<td></td>
<td>Y12: Increase of processes visualization and control Y13: Reduce of labor claims Y14: Compensate for the lack of a skilled worker1</td>
</tr>
</tbody>
</table>
4. Human factor- A system framework:
Industry 4.0 and technological change are rapidly transforming virtually all areas of human life, work, and interaction. These changes are acutely apparent in the way human work is organized and performed. However, it is still not fully clear to many in both industry and research what fully realised I4.0 applications might look like or how they might operate. For most practitioners, the digital transformation and its implications on operations processes remain a big black box. The transformation of production due to both technological and paradigmatic drivers leads to fundamental changes of organizations and processes and finally also of human work. Within this context, attention to human factors (HF) has been particularly sparse, despite the evident centrality of HF in four of the eight I4.0 developmental priorities (i.e. managing complex systems, safety and security, work organization and design, and training and professional development) laid out in the seminal I4.0-report by Kagermann et al.

Human Factors
Mental- learn, knowledge, training, capabilities, skill/s, experience/s, education, behavio(u)r/al, teach/ing, cognitive/cognition, talent, competencies, hmi, human-machine, mental, qualification, creativity, psychology/psychological, human- centered, confusion/ing/ed, human-robot, e-learning, human-computer, forget/ting, human-technology, memory, reasoning
Physical- physical, safety, manual, ergonomic/s, fatigue / fatiguing, posture, well-being, gesture, musculoskeletal disorder
Psychosocial- involve*, culture / cultural, feedback, motivation, stress/ful/ing, teamwork, fairness, work design, psychosocial, job satisfaction, job demand, job control, support
Perceptual- read/ing, perception/ual, information processing

5. Conclusion:
In this paper in Industrial revolution are Materials is the key factor of Industrial growth. In each new material are used to satisfy the customer needs and profit in production side. Artificial intelligence are developing Expert industrial systems are explored all industrial challenges. This article aimed at identifying which HF aspects have been considered to what extent in the scientific literature on Industry 4.0 and at providing a systematic approach that supports corporate Industry 4.0-system development. the benefits of Industry 4.0 related- technologies for three industrial performance metrics: product, operational and side-effects. Our results showed that some of these technologies are positively associated to the expected industrial benefits while others are still at a very early stage of adoption and, thus, without clear expected benefits. We discussed reasons for the lack of expectation of benefits for some of the promising technologies of the Industry 4.0 in this specific emerging industry.

Reference:

