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Abstract :  

 Newton's identities can be used to compute the coefficients of multi-step recurrence formulae for simulating the 

solutions of ordinary linear differential equations of high order. This approach gives the exact root-matched 

recurrence formula without having to determine the complex roots of the characteristic polynomials.  
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1. INTRODUCTION 

Let x(t) and y(t) denote continuous functions of time related according to the Nth order differential equation 

  

 

  

Where, 

 The coefficients ak and bk are constants.  

Simple linear relationships of this form are widely used in numerical simulations of heat transfer, chemical 

reactions, fluid flows, mechanical dynamics, Markov processes, etc. [1] (Relationships of this form are also 

used in signal filtering and control-system compensation, but in those applications the frequency response is 

usually emphasized over the exact time-domain response.) A variety of methods (cf [2,3]) have been used to 

numerically generate the solutions y(t) of such equations for arbitrary forcing functions x(t). In the digital 

environment equation (1) is often simulated by means of a multi-step linear recurrence relation of the form 
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Where 

 Xn and Yn are the column vectors 

  

 

  

for some constant Δt (called the step-size of the simulation), and g and h are constant row vectors 

  

 

  

Given the coefficients ak and bk of (1), our objective is to compute, as quickly and efficiently  as possible, the 

components of h and g. 

It is well known [4] that if the recurrence is required to match the exact homogeneous response for y(t) when 

x(t) is constantly zero, then the components of h must be proportional to the elementary symmetric functions 

[8] (with alternating signs) of the quantities , i = 1, 2, .., N, where αi are the roots of the characteristic 
polynomial of the left side of (1). The usual procedure for determining this "root-matched" recurrence is to 

solve the characteristic polynomial for         the roots αi, and then compute the elementary symmetric functions 

of these roots [5]. For high order relationships the most troublesome aspect of this approach is the 

determination of all the complex roots of the characteristic polynomials, especially when there are multiple 

roots [6].             The most common way of simplifying the calculations is to use a substitution method,                      

e.g., bilinear substitution [7], but such methods do not reproduce the exact homogeneous response.                

The purpose of this note is to describe how, using Newton's Identities, we can proceed directly from the 

coefficients of (1) to the exact root-matched recurrence coefficients without solving the characteristic 

polynomials. 

  

2. DETERMINING THE ROOT MATCHED RECURRENCE 

  

For any integer k, let w(k) denote the sum of the kth powers of the roots α1,α2,..,αN. Clearly, 

 w(0) = N. Using Newton's Identities [8,9] the values of w(k) for k = 1,2,... are given by 

  

 

  

for k < N, and the recurrence 

  

 

  

for all k ≥ N.  

Now let E(k) denote the sum of the kth powers of the values of , i = 1, 2, .., N. Expanding each of the 

exponential functions as a Taylor's series and combining terms by powers of Δt gives the following expression for 

E(k): 
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Letting σk denote (–1)k times the kth elementary symmetric function of the quantities ,  

we can now compute σ0 through σN using the identities 

  

 

  

The precision of these computations, including the convergence of (3), can be checked by verifying the equality 

  

 

  

The general recurrence for the homogeneous equation in y(t) can now be expressed as: 

  

 

  

where SA is the row vector 

  

 

  

Figure 1 presents an implementation of the preceding algorithm in BASIC. The inputs to this program are the 

order N, the step-size Δt, and the coefficients  a0, a1 .., aN. The program computes the values of σ0, σ1,..,σN. The 

parameter "sumto" determines the number of terms to be evaluated in the summation (3). 

  

By entering the coefficients bk in place of ak into the preceding algorithm we can determine                  the 

recurrence for the homogeneous equation in x(t) 

  

 

  

We can then combine the two sides of the recurrence by applying the appropriate scale factors, which are easily 

deduced from steady-state conditions. The result is 

  

 

  

Where 

 ΣSA and ΣSB denote the sums of the components of SA and SB respectively. 

  
 

3. EQUILATERAL RECURRENCES 

  

If bN = 0 then the characteristic polynomial of the right side of (1) has fewer than N roots. In this case the 

recurrence (4) would involve fewer "past values" of x(t) than of y(t). Note that the coefficients of xn in (4) were 

uniquely determined by the requirement that x(t) conform to the true homogeneous behavior when y(t) is 

constantly zero. However, in practice x(t) is an arbitrary forcing function so we are not really concerned with 
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reproducing the homogeneous "response" of x(t). Instead, we are trying to reconstruct the function x(t) from the 

discrete samples. Thus it is often considered more appropriate to make use of as many past values of x(t) as is 

computationally convenient. This typically leads to recurrences that use the same number of past values of x(t) as 

of y(t), i.e., equilateral recurrences. The usual approach in signal processing is to augment the roots of the right-

hand characteristic polynomial of (1) with fictitious roots of                    the form ±i, and then proceed as before . 

The effect is to add roots equaling –1 to the characteristic polynomial of the recurrence, which essentially mimics 

bi-linear substitution. 

  

The rationale for the "method of fictitious roots" just described is based on the frequency response characteristics. 

In the time domain it is often more appropriate to convert (1) into an equilateral equation by a simple change of 

variables. If we define the variable z(t) such that 

 y = λ(x+z) for some constant λ, then (1) can be written 

  

 

  

For any choice of λ not equal to 0, (bN/aN), or (b0/a0), this equation is equilateral, so we can apply the method of 

(4) to give the recurrence 

  

 

  

where gλ is based on the coefficients of the right hand side of (5). Reverting back to the y(t) variable gives 

  

 

  

For large values of λ the vector λ(gλ + h) is quite insensitive to changes in λ, and it converges in the limit as |λ| → 

∞. In practice, any λ greater than about 10 times the largest bi will give very nearly the limiting vector. This 

"change-of-variables method" enables us to determine equilateral recurrences for non-equilateral differential 

equations without resorting to fictitious roots. 

  

 

 

4. THE EXPECTED VALUE METHOD 

  

For comparison we briefly describe a method that explicitly treats x(t) as an independent variable and y(t) as 

a dependent variable. From this point of view it can be argued that the expected value of x(t) based on the N+1 

most recent samples is given by the Nth degree polynomial that passes through those samples. Although the 

method is a straight-forward application of polynomial curve fitting, no explicit formulation of the general Nth-

order recurrence formula appears in the literature, so a brief description is given below. 

  

As in our previous recurrence formulas, we require that the homogeneous response of y(t) be matched exactly, so 

we use the algorithm shown in Figure 1 to determine SA. Combining this with the particular solution based on the 

Nth order polynomial curve fit of x(t) leads directly to the total recurrence 
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where  

A, B, and T are square matrices such that the elements in the jth columns of the kth rows  

(where j,k range from 0 to N) are given by 

  

        

  

This method gives, arguably, the best possible reconstruction of arbitrary forcing functions x(t), although the 

matrix inversions make it somewhat laborious when applied to high order equations. 

  

5.  EXAMPLES 

  

To illustrate the basic algorithm for determining the root-matched recurrence relation for a homogeneous 

equation, consider the differential equation 

  

 

  

To simplify the recurrence expressions we will denote y(nΔt) by yn. Taking a time interval of           Δt = 0.1, the 

algorithm described in Section 2 gives the following recurrence formula for yn 

  

 

  

where 

 

  

(Notice that we've scaled the coefficients to make h5 equal to 1.) The accuracy of this recurrence can be illustrated 

by noting that (6) has the characteristic roots –1, –2+i, –2–i, –1+i, and –1–i, so one particular analytical solution 

has the simple form 

  

 

  

Taking y0 through y4 from (8) as initial values, it is easily verified that the recurrence (7) numerically reproduces 

the exact analytical values of y5, y6, y7 ... etc., very precisely. After 35 iterations of the recurrence formula (carried 

out to 10 significant decimal digits) the value of y40 differs from the analytical value by only 0.0000013, this 

discrepancy being due entirely to accumulated round-off error. In contrast, using the recurrence relation given by 

bilinear substitution, the error at y40 is 0.0013094. For larger step-sizes the error using bilinear substitution 

becomes progressively worse, whereas the root-matched recurrence method is equally applicable to any step-size. 
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We chose a homogeneous equation with simple characteristic roots for the preceding example so that the 

recurrence values could be easily compared to the analytical solution. Also, the characteristic roots in the 

preceding example all have negative real parts, so the solutions are "stable". However, our interest is not limited to 

"stable" systems. For example, problems involving combustion and thermal "run-away" often lead to "unstable" 

systems. To illustrate the various methods discussed in this note as applied to one of these "unstable" systems, and 

to include "numerator dynamics" [1], consider the differential equation 

  

 

  

Taking a time interval of Δt = 1, the relation between x and y can be simulated using a linear recurrence of the 

form (2), where the components of h and g are as listed in the table below (normalized for h5 = 1). 

  

 

  

All the methods except Bilinear Substitution made use of the BASIC program in Figure 1 to determine the 

components of h and to assist in determining the components of g. Interestingly, the Change-of-Variables Method 

gives components of g that closely match those given by the Expected Value Method, even though the former 

makes no use of a 5th order curve fit of x(t). In contrast, the methods of fictitious roots and bilinear substitution 

give very different g vectors, and therefore will clearly yield significantly different values of y(t) in response to 

certain forcing functions x(t). 

  

6. CONCLUSIONS 

  

The technique described in this paper uses Newton's Identities to efficiently determine the root-matched 

recurrence relations for numerically simulating linear ordinary differential equations. The algorithm is simple to 

implement and can easily be incorporated into any numerical simulation program. The main benefit of the method 

is that it eliminates the need to determine the characteristic roots of the differential equation, which can be difficult 

for high order equations. This makes the method particularly useful in real-time applications that require frequent 

computation of recurrence relations corresponding to given continuous transfer functions. The recurrences given 

by this method (unlike bi-linear substitution) are valid for any step size Δt, provided only that the sampling period 

is small enough to adequately resolve the forcing function x(t). Also, the algorithm requires no special handling of 

characteristic equations with repeated roots, so it is applicable to any equation of the form (1). We have also shown 

how the "Change-of-Variables" method can be used to generate robust equilateral recurrences without resorting to 

fictitious roots.   

http://www.jetir.org/


© 2023 JETIR December 2023, Volume 10, Issue 12                                                           www.jetir.org (ISSN-2349-5162) 

JETIRGA06052 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 473 
 

  

  

References 

1. E. O. Doebelin, System Dynamics, Modeling and Response, Charles E Merrill Publishing Company, 1972. 

2.V. Raman, "Explicit Multistep Methods In System Simulation", IEEE International   

3.Symposium on Circuits and  Systems, 1989, vol 3, p 1792-1795. 

4. S. Sallam, W. Ameen, "Numerical Solution of General nth-Order Differential Equations Via Splines", Applied 

Numerical Mathematics, Vol 6, 1989/90, pp 225-238. 

5.A. L. Rabenstein, Elementary Differential Equations With Linear Algebra, Academic Press, 1970. 

6. J. M. Smith, Mathematical Modeling and Digital Simulation For Engineers and Scientists, 2nd Ed, John Wiley 

& Sons, 1987. 

7. T. Miyakodo, "Iterative methods for multiple zeros of a polynomial by clustering", Journal of Computational 

and Applied Mathematics, vol 28 (1989), p 315-326. 

8.V. J. Bucek, Control Systems, Continuous and Discrete, Prentice Hall, 1989. 

9.A. Clark, Elements of Abstract Algebra, Dover Publications, 1984. 

10.  I. N. Herstein, Topics In Algebra, 2nd Ed, John Wiley & Sons, 1975. 

11.  G. F. Franklin, J. David Powell, M. L. Workman, Digital Control of Dynamic Systems, 2nd Ed, Addison-

Wesley, 1990. 

  

  

 

http://www.jetir.org/

