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Abstract: 

We study the persistence in the kinetic Ising model of glass transition by Frederickson and Anderson based on the kinetic 

Ising model with cooperative spin flip rates. We consider spin models that are standard Ising ferromagnetic ones and not the ones used 

for modelling spin glasses. We perform a graphical analysis to study the persistence of spins on coupled map lattice. We study Tent 

map and Logistic map.  
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1. Introduction: 

A majority of supercool liquids transit into a metastable glassy state if crystallization is prevented by significant cooling 

rates. Glass transition is experimentally characterized by relaxation periods of a few minutes or hours. The freezing in of the 

translational degrees of freedom causes a steady decrease in thermodynamic parameters such as compressibility, specific heat, and 

thermal expansion, at transition temperature Tg. This is known as the glass transformation range [1]. Tg is sometimes referred to as the 

"melting point of amorphous materials," and although this term may not sound scientific, it accurately describes the glass transition: 

polymeric materials are soft and rubbery in the highly viscous region above the Tg, whereas they are hard and brittle below it. 

However, there is a crucial distinction between glass transition and melting: melting represents a true first-order phase transition, 

whereas glassification (vitrification) is only a pseudo-second-order transition. In other words, while melting produces a discontinuity 

in the first derivative of Gibbs free energy (volume, entropy), glassification only causes a (pseudo) discontinuity in the second 

derivative (e.g., heat capacity, expansion coefficient, etc.).  

 

The actual nature of the glass transition is not widely understood, as it is a complex process controlled by a number of 

parameters, including heating rate, ageing history, morphology, and molecular weight. Several theories have been proposed to explain 

the glass transition. It is viewed as a dynamic process in the kinetic theories. The process of "freezing" the motions of chain segments 

(kinetic units) results in vitrification or glassification. The initial (solid-state) transition starts at extremely low temperatures, at that 

point, side chain motions and localised bond bending and stretching can happen. This is called the Tᵧ gamma transition. The material 

begins to acquire some toughness as the temperature rises and other localised motions involving whole side chain and localised group 

movements become active. This is called the beta transition (Tβ). Tg is reached when the heating continues. Large-scale coordinated 

motions of the polymer chains take place in this area, and a noticeable shift in characteristics is seen [3]. 

Leutheusser created a microscopic model of the hard-sphere fluid's glass transition. He developed a straightforward non-

linear solution for the time evolution of the density correlation function that forecasts a glass transition by roughly analysing mode 

coupling equations. A highly cooperative spin-flip rate kinetic Ising model is the foundation of the glass transition microscopic theory. 

Through graphical analysis, one can derive conclusions for the spin systems that closely resemble Leutheusser's findings for hard 

spheres. This observation might represent the addition of a universality aspect to the glass transition [4]. 

 

2. The Ising Model: 

 

The Ising model is intended to describe how short-range interactions, for example, between molecules in a crystal, result in 

long-range, correlative behaviour and, in a way, to forecast the possibility of a phase transition. The Ising model has also been used to 

solve issues in molecular biology, chemistry, and other fields that study the "cooperative" behaviour of complex systems [5] [6]. We 

assign independent variable σi = +1 or -1 to every lattice site i = 1,2,3, ..., N. Thus, there are only two possible outcomes at each lattice 

site: up or down or occupied or vacant. We create the system's Hamiltonian. The ideal and seemingly extremely severe assumption 

that only short-range, "nearest-neighbour" interactions and interactions between the lattice sites and an "external field" contribute to 

the system's energy level is the basis for the definition of the Hamiltonian for the Ising model. For each configuration σi = (σ1, σ2, ..., 

σN) we have, 
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𝐻 = 𝐻(𝜎) = − ∑ 𝐸 (𝜎𝑖  . 𝜎𝑗)

<𝑖,𝑗>

− ∑ 𝐽 𝜎𝑖

𝑖

 

where the first sum is over all pairs of the lattice's nearest neighbours and the second sum is over all lattice sites. E and J are the 

parameters in this equation. For nearest-neighbour interactions and interactions with the external field, respectively, the parameters E 

and J stand for the "energies" involved. A ferromagnet has an energy level that is lower than a non-magnetized configuration because 

a "magnetised" configuration (where the majority of nearest-neighbour pairings have parallel moments, 𝜎i = 𝜎j) has a positive E. When 

an "external magnetic field" (represented by the parameter J) is present, the magnetic moments will seek to align with the field's 

direction, once more "favouring" configurations with shorter energy levels [7]. 

 

 
 

Fig. 1: The Ising model applied to a two-dimensional square lattice. Every arrow is a "spin," a magnetic moment that might point 

upward or downward. 

 

3. The Model:               

We study a variant of the Fredrickson-Andersen model [4] based on an extremely cooperative spin-flip rate kinetic Ising model-

based microscopic theory of the glass transition. An n-spin facilitated model is defined as one for which the flip rate of the jth spin is 

nonzero only if n or more near neighbours of spin j are in the spin-up state in spin configuration 𝜎 [4]. The update rules are as follows: 

a) We choose a site randomly on the lattice. 

b) If none of the neighbours is 'up' spin, the spin at this site is not changed. 

c) If the site has at least one 'up' neighbour, and the site itself has an 'up' spin, it is flipped. 

d)  If the site has at least one 'up' neighbour and the site itself has a 'down' spin, it is flipped with probability p. 

An all-spins "down" is the absorbing state for any value of p. Spins for p=0 will occasionally be "down." This isn't guaranteed for 

higher values of p. We investigate the system's short-time dynamics and memory retention. It is common to observe extended 

exponential dynamics in glassy systems. For lower values of p, the dynamics should be exceedingly sluggish. This will show up as 

autocorrelation with starting conditions. We have examined the likelihood that the initial conditions will be precisely maintained, or 

persistence, a stronger quantifier. In this case, it is defined as the fraction of spins that have not altered their original spin state at all 

until a specific period. Nonzero persistence suggests that the system preserves the initial conditions indefinitely. The decay exponent 

is referred to as the persistence exponent when the persistence exhibits power-law decay at the critical point. This is a non-Markovian 

quantity. The exponents are found to be non-trivial even in the simplest of cases [8]. In the previous work, we studied persistence in 

this model of glass transition and plotted the persistence P(t) vs time t on a semi-logarithmic scale [9]. We obtained a stretched 

exponential behaviour for all values of probabilities and respective exponents considered. 

 

4. Coupled Map Lattice (CML) 

 

 Menon, Sinha, and Ray have extended the Ising model to coupled map Lattice (CML). They suggested that the initial 

variable value of a site should be represented by (+) spin if it is more than the fixed point and (−) spin if it is less than the fixed point. 

It is now possible to specify the persistence in a way that is similar to spin systems [10]. We simulate the system of size N= 5 x 104 for 

105 time steps and averaged over 2.5x104 configurations. CML was originally introduced to facilitate the study of spatiotemporal 

chaos, i.e., chaotic dynamics in a spatially extended system [11]. In the spatially extended system, CML is the nonlinear dynamical 

system. It's a type of iterative system constructed from several similar functions of a single variable that are connected linearly to a 

network's closest neighbours. The time evolution is given by: 

 

𝑥𝑡+1(𝑖) =(1-ε) 𝑓(𝑥𝑡(𝑖))+
𝜀

2
 { 𝑓(𝑥𝑡(𝑖 + 1)) +  𝑓(𝑥𝑡(𝑖 − 1))} 

where xt(i) is a continuous variable value x at discrete time t at lattice site i. Here ε is the coupling parameter and f(x) is the underlying 

map. There are a number of variants to consider, including asymmetric and linear coupling. It is simple to extend the idea to higher-

dimensional lattices. Higher-dimensional maps like the Henon map have also used. Nonetheless, logistic and tent maps continue to be 

the most studied maps.  

5. Results: 
We study Coupled Tent and Logistic Map. We consider two values of probability p<1 (p=0.8 in this case) and p=1 for both the maps.  

a) Tent Map 

The canonical form of Tent map is: 

        𝑥𝑖+1 = 𝑓(𝑥𝑖) = 𝜇𝑥𝑖           for     xi <
1

2
         and 

                                                                        = 𝜇(1 − 𝑥𝑖)               for     xi ≥
1

2
 

where μ=1.47. We study phase diagram for p=0.8 for various combination of μ (in range 1.2-2) and ε (in range 0-0.4) (See Fig:2). We 

plot the persistence exponent for various values of ε in the range [0.291:301]. We do not observe a power law in this case as seen in 
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Fig.3. In the case of p=1, we plot the phase diagram for various combinations of μ (in the range 1-2) and ε (in the range 0-0.45) (See 

Fig:4). We obtain power-law decay of persistence P(t) ~ t-θ , where θ is the decay exponent, at ε=0.314 (θ=0.122 as seen in Fig:5). 

 

 

  
Fig.2: Shows phase diagram for p=0.8 for several 

combinations of μ and ε in case of coupled tent map. 

Fig.3: Shows the time evolution of persistence P(t) on 

log-log scale for several values of ε in the range 

[0.291:301] for coupled tent map. 

  

            
Fig.4: Shows phase diagram for p=1 for several 

combinations of μ and ε in case of coupled tent map. 

Fig.5: Shows the time evolution of persistence P(t) on 

log-log scale. We obtain power law at ε=0.314. The 

decay exponent θ= 0.122 for coupled tent map. 

 

 

 

b)  Logistic map 

 

The canonical form of Logistic map is:  

 

𝑥𝑖+1 = 𝑓(𝑥𝑖) = 𝜇𝑥𝑖(1 − 𝑥𝑖) 

 

where 𝜇=3.474. We study the phase diagram for p=0.8 for various combinations of μ (in the range 3-4) and ε (in the range 0-0.3) (See 

Fig:6). We plot time variation of the persistence on log-log scale. We obtain power law P(t) ~ t-θ at ε=0.168. θ=0.37 as shown on 

Fig.7. In case of p=1, we plot the phase diagram for various combination of μ (in range 3-4) and ε (in range 0-0.3) (See Fig:8). We do 

not obtain power law in the case as seen in Fig:9. 
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Fig.6: Shows phase diagram for p=0.8 for several 

combinations of μ and ε in case of coupled Logistic 

map. 

Fig.7: Shows the time evolution of persistence P(t) on 

log-log scale. We obtain power law at ε=0.168. The 

decay exponent is θ= 0.37 in the case of coupled 

Logistic maps. 

 

                      

         
Fig.8: Shows phase diagram for p=1 for several 

combinations of μ and ε in case of coupled Logistic 

map. 

Fig.9: Shows the time evolution of persistence P(t) on 

log-log scale with ε in the range [0.25427:2543].  

               

 

6. Summary: 
Fredrickson and Andersen introduced the kinetic Ising model of glass transition [4]. In our work, we make a study of the 

existence of persistence in this model on coupled map lattice where the underlying maps are Tent map and Logistic map. Our function 

consists of a Hamiltonian that comprises the sum over all pairs of the lattice's nearest neighbours along with the sum over all lattice 

sites. We consider two cases, p=0.8 and p=1 for the coupled tent map and coupled logistic map. We plot phase diagrams for all of 

these. For the tent map (p=1) and logistic map (p=0.8) we get a clean power law with exponents θ=0.122 and θ=0.37 respectively.                        
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