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Abstract— The burgeoning interest in harnessing electroencephalography (EEG) signals for non-muscular communication and control 

has spurred extensive research in pattern recognition. Recent years have witnessed a surge in efforts to extract meaningful features from 

EEG data, aiming to elucidate the intricate connections between brain activity and behavior. However, conventional vectorization-based 

feature representations, be it vector-like or matrix-like, are hampered by pervasive signal noise and the challenge of leveraging signal 

correlations among neighboring EEG sensors. 

A crucial preliminary step in integrating EEG signals into a learning model entails standardizing them into a unified frequency 

representation. Disregarding specific frequency components of EEG signals can undermine activity recognition, as different frequencies 

hold varying degrees of relevance in discerning distinct activities. The proposed approach hinges on three fundamental pillars: data 

preprocessing, feature extraction, and model training. 

Data preparation encompasses artifact avoidance and linear filtering to mitigate noise interference. Notably, the Common Spatial 

Domain emerges as the predominant choice for feature extraction. Subsequently, the Hybrid EEGNET model is deployed for model 

training, demonstrating superior performance compared to the commonly employed alternatives, namely CNN and LSTM. Remarkably, 

the proposed method achieves an impressive success rate of 97.52 percent. 
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I. INTRODUCTION  

Unveiling the intricacies of human intention has long been a quest at the forefront of neuroscience and technology. The advent of 
electroencephalography (EEG) signals as a means to decode these intentions has ignited a paradigm shift, promising novel avenues for 
understanding and harnessing human motion. In recent years, the fusion of EEG signals with advanced neural network architectures, 
notably EEGNET, has emerged as a pioneering approach in deciphering human motion intentions. 

Human motion intention detection holds profound implications, not merely in rehabilitation and assistive technology, but also in 
the realms of human-computer interaction and robotics. By tapping into the neural signatures underlying motor intentions, researchers 
aim to bridge the gap between the human mind and external devices, enabling seamless communication and control. 

However, traditional approaches to motion intention detection have encountered formidable challenges, from signal noise to the 
limitations of feature representation. Vectorization-based methods, though prevalent, often falter in capturing the nuanced dynamics of 
EEG signals, thereby impeding accurate intention decoding. 

In this context, the hybrid role of EEGNET—a neural network architecture tailored for EEG signal analysis—presents a 
transformative solution. By integrating EEGNET with innovative methodologies, this hybrid approach promises to unravel the 
intricacies of human intentions with unprecedented fidelity and efficiency. 

This paper delves into the realm of human motion intention detection, shedding light on the novel hybrid EEGNET-based approach 
poised to revolutionize the field. Through a comprehensive exploration of data preprocessing, feature extraction, and model training, 
we unveil the potential of EEGNET in decoding human intentions, paving the way for a new era of seamless human-machine 
interaction.  

II. LITERATURE REVIEW 

Rapid and accurate forecasting of human intentions is paramount for the success of collaborative robotic applications [1]. This 
necessitates the gathering and interpretation of body signals, a task integral to Human Intention Detection (HID). HID operates in two 
primary stages: the motor driver adjusts the motor's output (speed or torque), followed by the regulation of the robot's impedance or 
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admittance. While impedance control is crucial, existing model-based approaches, such as the one-joint, two-link model, are 
impractical for many assistive robot applications due to their time-intensive operation [2]. 

To enable effective utilization of exoskeletons, it's imperative to detect the pilot's intentions accurately. This involves gathering and 
analyzing joint signals, including velocity, angular rate of change, and torque of the upper body [3]. Traditional AI systems like optical 
flow, while effective, require stationary setups for reliable data collection and are unsuitable for mobile devices. In contrast, Inertial 
Measurement Unit (IMU) based systems offer a wearable solution, allowing subjects to move freely and are thus better suited for use 
with exoskeletons [4]. 

The recorded signals are then processed using simple methods to extract bodily positions and motion data, establishing thresholds 
for movements [6]. Anticipated benefits of Physical Human-Robot Interaction (pHRI) include enhancing the efficiency of production 
jobs and operations, particularly those requiring human-like dexterity [9]. pHRI-equipped cobots can interpret human intentions and 
respond appropriately, as demonstrated by studies utilizing object velocity to adjust control parameters based on the operator's intent 
[7]. 

Surface Electromyography (sEMG) signals, which capture muscle activity, offer valuable insights into human intentions, especially 
in the context of exoskeletons and therapeutic robots [10]. sEMG-based human motion intention identification, on the cusp of 
mainstream adoption, offers comprehensive and non-invasive insights [12]. Machine learning (ML) algorithms, including Linear 
Discriminant Analysis (LDA), Support Vector Machine (SVM), and Deep Learning (DL), are commonly employed for motion 
intention recognition [14]. 

Proposed strategies include using DL models, such as Convolution Neural Networks (CNNs) and Stacked Auto-Encoders (SAEs), 
for gesture intent determination [15]. Additionally, prediction strategies leveraging Inertial Measurement Unit (IMU) and sEMG 
signals have demonstrated high accuracy in forecasting user intentions [17]. However, challenges persist, particularly in accurately 
predicting steady-state motion patterns [17]. 

Efforts to mitigate these challenges include feature engineering to interpret noisy signals and autonomous feature extraction for 
stable algorithms [18]. Advanced frameworks, such as Expectation Maximization (EM), are utilized to extract human motion patterns 
for precise mobility predictions [20]. Overall, the goal is to model human intent using familiar environmental structures, thereby 
enhancing the transferability of prediction algorithms to novel environments [21]. 

III. PROPOSED METHODOLOGY 

Before  Navigating an exoskeleton could pose challenges or risks if the human operator's intended gait pattern clashes with the 
exoskeleton's control systems. Extensive research has been conducted to identify the optimal gait operation. However, the timing of 
recognition plays a critical role in this process. Instantaneous or delayed pilot intent detection can adversely affect the performance of 
an exoskeleton. As a departure from conventional motion detection methods, this study explores the viability of real-time detection 
through gait recognition. 

A. Preprocessing 

 
In the preprocessing stage of the Brain-Computer Interface (BCI) system, EEG signals undergo filtering to remove random noise that 
may arise from various anomalies. This section explores some of the cutting-edge filtering techniques recently employed in BCI 
settings. 

1) Artifacts Avoidance: 

Achieving high-quality EEG recordings involves careful placement of the EEG cap on the patient and positioning any additional 
devices that may affect the recording area. This technical step precedes signal filtering for physiological artifacts and is essential for 
collecting accurate data. 

2) Linear Filtering: 

  Linear filtering is a commonly employed technique to eliminate artifacts in signals that do not share frequency components with 
brain signals. Among linear filtering methods, lowpass and highpass filtering are the most prevalent [22]. EOG artifacts typically 
necessitate a high-pass filter due to the presence of low-frequency components, while most EMG components exhibit high frequencies 
and can be attenuated with a low-pass filter. 

One of the primary strengths of linear filters is their ease of implementation, both in software and hardware. For instance, to 
remove EOG or EMG noise from an EEG signal, a linear filter can be applied without the need to define specific characteristics of the 
artifact signal beforehand. However, in cases where EEG and EOG (or EMG) signals overlap, linear filters may prove ineffective in 
isolating EEG data and removing artifacts from the EEG signal. 

B. Feature Extraction:  

While originally proposed for binary classification tasks, the Common Spatial Patterns (CSP) technique has demonstrated utility in 
EEG data analysis involving Event-Related Synchronization/Desynchronization (ERS/EDS). However, when faced with scenarios 
involving a large number of classes, the CSP algorithm may require refinement. 

The CSP algorithm operates by spatially projecting the original EEG signal, aiming to find the axis along which the variation of 
one signal type is maximized while the variance of the other signal type is minimized. This results in a projection axis that optimally 
separates the two signal types [23]. 

Once the EEG signal has been preprocessed, including the removal of the DC component 𝑉 × 𝑊, the resulting matrix E can be 
utilized. Assuming 𝑉 channels of EEG data, each channel is sampled 𝑊 times. Consequently, the covariance matrix of the EEG data 
can be calculated as follows: 
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The transposition of the 𝐵𝐵𝑊 matrix is denoted by 𝐵𝑊𝑇. The average covariance of the individual EEG signals is represented by 𝐺𝑃, 
where 𝑝 ∈ {1,2}. Thus, the overall mean of the covariance matrix can be expressed as: 

 

Upon decomposing the eigenvalues of 𝐺𝑔, the following insights are gained: 

 

After constructing the whitening matrix, 𝑀𝑔 represents the eigenvectors of the complex conjugate matrix 𝐺𝑔, while 𝑔 denotes the 
corresponding eigenvalues. 

 

 

 
After transforming 𝐺1 and 𝐺2, it is established that: 

 

As the eigenvectors 𝑍1 and 𝑍2 share identical eigenvalues, their combined sum equals 1. While 𝑍2 boasts the largest eigenvalue, 
𝑍1 possesses the smallest. Consequently, the direction associated with the smallest eigenvalue aligns with that of the largest 
eigenvalue. 

 

The projection of the first 𝑢 rows and last 𝑢 rows of the table yields the number 𝑢. The subsequent steps involve processing a new 
signal to extract the ultimate eigenvalue: 

 

C. Training the Model: Hybrid EEGNET Model 

This section illustrates the operation of the Hybrid EEGNet model, comprising two independent TensorFlow networks. 
Specifically, the HybridEEGNet model integrates two separate CNN-based components, each featuring 8 convolutional layers and 8 
max-pooling layers. These independent CNN models share the same softmax layer and four fully connected layers across all 
submodels. 

SynEEGNet is dedicated to learning synchronous EEG data, while RegEEGNet focuses on learning regional EEG features. 
Together, they constitute the complete model. The "Layer Size" columns provide formulas for calculating the number of neurons at the 
input or output of each layer: channels * data points * feature maps. Each layer in SynEEGNet shares identical input and output sizes 
with its counterpart in RegEEGNet, thereby avoiding redundancy in representation. 

Regarding "Filter Size," it denotes the largest pooling size or convolutional filter size. These filters, named Syn for learning 
synchronous EEG properties and Reg for learning regional EEG characteristics, traverse both the 𝑙 and 𝑟 axes simultaneously. The 
input to the first layer comprises a 2D matrix of 𝐺 channels, with 𝐹 representing the total number of data points. 

During convolutional filter application, the 𝑙 and 𝑟 coordinates shift by one unit. Zero-padding is applied to the input if the filter 
size does not perfectly match. Max-pooling filters subsequently shift the input data at regular intervals, moving one unit along the 𝑙 
axis and two units along the 𝑟 axis. 

Overall, this detailed description outlines each stage of the Hybrid EEGNet model, elucidating its architecture and operational 
mechanisms. 

IV. RESULTS AND DISCUSSION 

After  Recent advancements in collaborative robot (cobot) technology have facilitated enhanced collaboration between robots and 
humans in manufacturing environments. This progress opens up opportunities for improved efficiency and flexibility in factories, 
driven by the ability to recognize human intent and enable seamless cobot-human collaboration. 
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Despite significant strides in physical human-robot interaction (pHRI), interpreting human intent and adjusting the cobot's 
controller accordingly remains one of the most challenging obstacles to overcome. 

TABLE I. COMPARISON OF MODELS(%) 
 

Table 1 presents a comparison of precision, recall, and F1-scores 
achieved by LSTM, CNN, and Hybrid EEGNET models. The 
performance of the proposed model is juxtaposed against previously 
utilized models. Notably, the proposed model demonstrates superior 
performance, surpassing state-of-the-art models by an impressive margin 
of 97.52%. 

  

Fig. 1. Accuracy Comparison of the Models 

Figure 1 illustrates a comparison between the existing system and the proposed one. The proposed system achieved an overall 
accuracy of 97.52% in detecting human motion intentions, showcasing enhanced classification accuracy compared to the existing 
system. 

Figure 2 depicts the decrease in loss over time with an increasing number of iterations. The training loss stabilizes after 10 epochs 
before data augmentation and after 5 epochs thereafter. 

 

  

Fig. 2. Loss Comparision of the Model 

 

Fig. 3. ROC Curve of the Proposed Approach 

Figure 3 displays a ROC curve (Receiver Operating Characteristics) illustrating our model's effectiveness in diagnosing multiple 
diseases. This curve serves as a validation strategy, assessing the efficacy of a classification method by comparing the true positive rate 
with the false positive rate. Notably, the proposed model demonstrates superiority, as indicated by its performance curve positioned in 
the top left corner. 

Models Precision  Accuracy F1-

Score 

Recall 

LSTM  87.13  88.65  88.91  86.32  

CNN 92.37 93.81 93.27 91.68 

Hybrid 

EEGNET 

96.34 97.52 97.14 95.76 
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V. CONCLUSION 

The Brain-Computer Interface (BCI) represents a groundbreaking device facilitating direct communication between the human 
brain and electronic devices, including computers. Electroencephalography (EEG) signals play a crucial role in BCI systems due to 
their non-invasive nature, allowing comfortable acquisition from users. 

Developing a high-performance system capable of accurately identifying motion intentions from EEG data across different subjects 
and multiple categories presents a significant challenge. In this paper, we propose employing a convolutional recurrent neural network 
to address this challenge effectively. To preserve spatial and temporal features, the raw EEG streaming is transformed into an image 
sequence based on the position of the primary sensorimotor area. 

Data preparation involves techniques such as artifact avoidance and linear filtering. Feature extraction primarily relies on the 
Common Spatial Domain method. The Hybrid EEGNET architecture is utilized for model training, which demonstrates superior 
performance compared to both CNN and LSTM models. 
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