
© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 109

A COMPARATIVE STUDY ON ANALYSIS OF

SORTING ALGORITHMS COMPLEXITIES ON

DIFFERENT LOADS OF NUMERIC AND

STRING DATA

Lavisha Gupta1, Sarvagya Soni2, Poshit Nagda3, Anant Agrawal4, Mayank Patel5

 U.G. Scholar 1,2,3,4, Professor5

Department of Computer Science and Engineering1,3,5, Department of Computer Science and Engineering

(Artificial Intelligence)2,4

 Geetanjali Institute of Technical Studies, Dabok, Udaipur, Rajasthan, India1,2,3,4,5

Abstract: Sorting algorithms are the very important data structure operation. As we have millions or trillions of data stored in our

memories, it is very difficult for us to find specific required data. To sort data is to arrange them in ascending or descending order

so that the searching, locating or arranging of data becomes easy. Every sorting has some advantages and some disadvantages,

likewise each sorting algorithm takes different time to sort the data. In this research paper we compared various sorting algorithms

in respect to their execution time. The efficiency of every algorithm varies with the number of input and we have compared the

efficiency of the algorithm so that we can see which algorithm is best to use based on the load. The sorting algorithms are evaluated

in JAVA.

Keywords – Bubble Sort, Heap Sort, Insertion Sort, Merge Sort, Selection Sort, Sorting Algorithm Evaluation

I. INTRODUCTION

Sorting algorithm in computer science, is an algorithm that puts elements of a list in a certain order. Efficiently sorting a list is

important for optimizing the use of other algorithms (such as search and merge algorithms) which require input data to be stored in

lists. There are a lot of sorting algorithms available for sorting the given data or file. Some algorithms are efficient for some inputs

and some are not. The efficiency or performance of an algorithm depends on the time and space complexity of the algorithm. The

space complexity of an algorithm is the amount of memory it needs to run to completion. The time complexity of an algorithm is the
amount of computer time it needs to run to completion.

Any sorting algorithm should satisfy the following properties:

(i) The output must be sorted.

(ii) It must still contain the same elements.

In the various sorting techniques using the stability and the time efficiency. In this paper we discuss the efficiency of the algorithms

using the number of inputs and the time taken to sort the elements.

This paper deals with the following sorting techniques:

1. Bubble Sort

2. Selection Sort

3. Insertion sort

4. Quick Sort

5. Merge Sort

6. Heap Sort

7. Radix Sort

8. Counting Sort

II Theoretical framework

Bubble Sort: Bubble sort uses brute force method to sort the elements. Bubble sort is also called as sinking sort, is a simple sorting

algorithm that repeatedly steps through the list to be sorted, it compares each pair of adjacent items and swaps them if they are in

the wrong order. This algorithm is stable; since it only swaps two items if the latter one is strictly greater, so equal-valued items

will stay in their original order. When the elements are already in sorted order, bubble sort takes minimum time. It can be applied

to a smaller set of data Variables of the study contains dependent and independent variable. The study used pre-specified method

for the selection of variables. The study used the Stock returns are as dependent variable. From the share price of the firm the Stock

returns are calculated. Rate of a stock salable at stock market is known as stock price.

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 110

Figure 1. Working of bubble sorting

Selection sort: It is implemented using Brute force technique. The selection sort algorithm sorts an array by repeatedly finding the

minimum element (considering ascending order) from the unsorted part and putting it at the beginning of the array. The algorithm

maintains two sub arrays in a given array. The first subarray is the array which is already sorted. And the second is the remaining

sub array which is unsorted. One of the applications of selection sort is to find the unique element in a data set.

Figure 2. Working of Selection Sort

Insertion Sort: Decrease and conquer method is used to sort the elements using insertion sort. Insertion sort is a simple sorting

algorithm that builds the final sorted array (or list) one item at a time. The algorithm is more useful if the first few objects are

already sorted, an unsorted object can be inserted in the sorted set-in proper Place.

Figure 3. Working of Insertion Sort

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 111

Quick Sort: Quick-sort uses Divide and Conquer technique. It picks an element as pivot element and partitions the given array

around the picked pivot element. There are many different versions of quick-sort that pick the pivot element in different ways.

Always pick the first element as a pivot element. Always pick the last element as pivot elements. Pick a random element as a pivot

element. Pick median as pivot element. The sorting technique is best suited to sort a large number of data. This performs better than

Merge Sort and Heap Sort which have the same asymptotic time complexity O(n log n) on average but the constant factors hidden

in the asymptotic time complexity for quicksort are pretty small. The algorithm is implemented in medical monitoring systems,

Google pages for fast retrieval, life support or control systems etc.

Figure 4. Working of Quick Sort

Merge Sort: Merge Sort uses Divide and Conquer algorithms. It divides the input array into two halves, calls itself for the two

sorted halves and then merges the two sorted halves. The author in [2] has discussed the optimum solution of merge sort and

explained the sequence in detail.

Heap Sort: The method used by the heap sort, a comparison-based sorting algorithm, is to divide an array into sorted and unsorted

regions, repeatedly reducing the size of the unsorted part by removing the largest element and shifting it to the sorted region. Relying

on the binary heap data structure, it creates a max-heap from the array, a binary tree in which the parent nodes are always bigger

than the offspring. The last element in the array is then swapped for the largest element, and the heap is then re-qualified. Heap sort

is effective for handling huge datasets and comes with a worst-case time complexity of O(nlogn).

Figure 6. Working of Heap Sort

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 112

Radix Sort: A non-comparison-based sorting technique called radix sort sorts items one digit at a time, beginning with the least

important digit. When working with integer values, it groups the elements according to their digits, then sorts each group according

to the next digit, and so on, finishing with the highest significant digit. Radix sort is effective for handling huge data sets since it

possesses a worst-case time complexity of O(kn), wherein k is the greatest number of digits in the elements. It works well when

sorting elements that have a defined amount of numbers or when sorting elements according to a certain characteristic

 Figure 7. Working of Radix Sort

Counting Sort: Counting sort is an integer sorting algorithm with linear running time complexity. For some integer K, counting

sort assumes that each element is an integer in the range 1 to K. It works by counting the number of occurrences of each element in

the input, usually called keys, and store this information in another array, we need to modify the array to identify the location of

each key value in the output sequence, use the prefix sum on the counts. Counting sort is not a comparison sort, and it preserves the

relative order of the elements with equal keys.

Figure 8. Working of Counting Sort

III. RESULTS AND DISCUSSION

3.1 FOR NUMERIC DATA:

For Numeric data we take 10 elements in Low Load, 100 elements in Average Load, 1000 elements in Intermediate Load and 10000

elements in High Load and the performance was recorded for each sorting algorithm shown in the graph of following cases.

3.1.1 BEST CASE:

 In the best case, we take an ordered (sorted) data set for observing performance of different algorithms and by analyzing the

performance of each sorting algorithm. We finalize the result that selection sort performs better in every case when data is in ordered

form.

Table 1: Complexity time of various Sorting Algorithm for Numeric Ordered Data

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 113

 Figure 9: Graphical representation of Complexity time for Numeric Ordered Data

3.1.2 WORST CASE:

The unordered (unsorted) set of numeric data was taken by us for observing performance of different algorithms. In this

Analysis, Quick Sort and Merge Sort perform better than other sorting algorithms. The Quick Sort performs much better

than the Merge Sort in Heavy Load.

Table 2: Complexity time of various Sorting Algorithm for Numeric Unordered Data

 Figure 10: Graphical representation of Complexity time for Numeric Unordered Data

3.2 FOR STRING DATA:

For String data, we take 10 elements in Low Load, 50 elements in Intermediate Load and 100 elements in High Load and the

performance of different algorithms was recorded. The results were recorded for two cases in which the one case was Best case
and the other one was Worst Case.

3.2.1 BEST CASE:

We take an ordered (sorted) data set of strings in each load for observing performance of different algorithms. Here, the sorted data

means the string data in alphabetical order. On the basis of a given data set, the performance was recorded and shown in graphs.
The Selection Sort performs much better than the rest, when data given was sorted.

0

200

400

600

800

Bubble SelectionInsertion Quick Merge Radix Heap Counting

Best Case (Numeric Data)

10 100 1000 10000

0

200

400

600

800

Bubble Selection Insertion Quick Merge Radix Heap Counting

Worst Case (Numeric Data)

10 100 1000 10000

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 114

 Table 3: Complexity time of various Sorting Algorithm for String Ordered Data

Figure 9: Graphical representation of Complexity time for String Ordered Data

3.2.2 WORST CASE:

We take an unordered (unsorted) data set of strings for observing performance of different algorithms. The observed result was

recorded in a table and shown in the graph. The analysis of algorithms in worst case concludes that the quick sort performs better

than the rest of the algorithms in each load.

Table 4: Complexity time of various Sorting Algorithm for String Unordered Data

0

200

400

600

800

Bubble Selection Insertion Quick Merge Radix Heap Counting

Best Case (String Data)

10 50 100

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 115

Figure 10: Graphical representation of Complexity time for String Unordered Data

IV CONCLUSION:

In this research paper we compared various sorting algorithms in respect to their execution time. The efficiency of every algorithm

varies with the number of input or load and we have compared the execution of the algorithm so that we can see which algorithm is

best to use. The sorting algorithms are evaluated in C++. From our experimental results we identified that in a Best case or in a sorted

data set of both String and Numeric data type, the Selection Sort behaves optimal. But for the Worst case or for unsorted data sets of

both String and Numeric Data, the Quick and Merge sort behaves better than others, especially the Quick Sort. So, the final conclusion
of our analysis was, it is optimal to use Selection Sort in sorted data and it is optimal to use Quick Sort in unsorted data.

V REFERENCES

[1] ZHANG YIWEN, TAN JI, “ANALYSIS AND IMPROVEMENT ON SIMPLE SELECTION SORT ALGORITHM “, SILICON VALLE, NO. 18, PP.

77- 94, 2009.

[2] YAN WEIMIN, WU WEIMIN “DATA STRUCTURES “IN, BEIJING: TSINGHUA UNIVERSITY PRESS., PP. 263-278, 2000.

[3] Kowalk W.P. (2011) Insertion Sort. In: Vöcking B. et al. (eds) Algorithms Unplugged. Springer, Berlin, Heidelberg.

[4] Min Wang, “Analysis on bubble sort algorithm optimization “, 2010 International Forum on Information Technology and
Applications, July 2010.

[5] U. Ameta, M. Patel and A. K. Sharma, "Scaled Agile Framework Implementation in Organizations', its Shortcomings and an AI

Based Solution to Track Team's Performance," 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT),

Bangalore, India, 2022, pp. 1-7, doi: 10.1109/GCAT55367.2022.9971968

[6] Patel M (2018) Data Structure and Algorithm With C. Educreation Publishing

[7] Weik M.H. (2000) merge sort. In: Computer Science and Communications Dictionary. Springer, Boston, MA

[8] Jehad, M. Rami “An Enhancement of Major Sorting Algorithms,” The International Arab Journal of Information Technology,
Vol. 7, No. 1, January 2010

0

200

400

600

800

1000

Bubble Selection Insertion Quick Merge Radix Heap Counting

Worst Case (String Data)

10 50 100

http://www.jetir.org/

