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Abstract: This paper introduces a new machine learning algorithm for tailoring influenza medication choice and dosage adjustment 

according to patient-specific genetic markers and clinical features.Growing evidence for pharmacogenomic effects on antiviral 

activity requires a more personalized treatment of influenza. We constructed a two-stage machine learning system that initially 

chooses the best medication class (neuraminidase inhibitors, endonuclease inhibitors, or supportive care) and then computes 

individualized dosage suggestions. Our model includes key genetic elements such as CYP2D6 enzyme activity variants, IFITM3 

polymorphisms, and IL17 expression levels, in addition to routine clinical measures. The classifier for medication recommendation 

had 92.7% accuracy, and the dosage prediction model showed an R² of 0.89, indicating strong potential for clinical use. This study 

is an important advance toward precision medicine in the treatment of infectious diseases, although clinical validation will be 

necessary before its application in clinical practice. 

 

IndexTerms: Influenza, machine learning, pharmacogenomics, personalized medicine, drug dosage optimization, random 

forest classifiers, CYP2D6, IFITM3 

 

I. INTRODUCTION 

Influenza, a contagious respiratory disease, infects millions globally each year, contributing to significant morbidity and mortality, 

with the World Health Organization estimating 3–5 million severe cases annually. Despite the availability of antiviral drugs and 

vaccines, their efficacy varies significantly due to differences in individuals’ genetic composition, medical conditions, age, and 

other clinical factors. Personalized medicine seeks to customize disease treatment to an individual patient’s unique characteristics. 

Unlike generic treatment regimens, personalized approaches consider a patient’s genetic makeup and clinical history to determine 

the most effective drug and dosage. This method can improve treatment outcomes, reduce side effects, and avoid ineffective 

medications. Growing evidence for pharmacogenomic effects on antiviral activity necessitates a more personalized approach to 

influenza treatment [10]. Host genetic variations, such as those in IFITM3 and HLA genes, have been shown to influence influenza 

severity and treatment response, supporting the need for personalized antiviral interventions [10]. Arn Machine learning models, 

such as XGBoost and neural networks, have demonstrated high accuracy in predicting influenza outcomes and tailoring treatments 

based on patient-specific data [6, 5]. Causal machine learning approaches have further enhanced the reliability of personalized 

treatment recommendations by accounting for patient health states and clinical history [4]. In recent years, machine learning, a 

subset of artificial intelligence, has become a vital tool in healthcare. Machine learning algorithms can extract meaningful patterns 

from large, complex datasets and generate predictions. In influenza treatment, machine learning enables the development of models 

that predict a patient’s response to various medications and dosages based on their genetic and clinical data. 
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II. LITERATURE REVIEW 

Chen et al. [1] designed a deep learning model with 87 hospital clinical data to identify severe cases of influenza. The model was 

highly accurate in predicting severe cases of influenza (high AUC >0.82), which favored early detection and improved allocation 

of treatment. 

 

Zhu et al. [2] implemented a kernel-based learning model for personalized dose recommendations. The model worked well in 

simulations, enhancing drug safety and tailored treatment outcomes. 

 

Li et al. [3]: Causality-Based Medication Recommender System presents a causal model with patient health states and treatment 

history to produce safer and more precise individualized medication plans. 

 

Feuerriegel et al. [4] Causal Machine Learning for Treatment Effects investigated causal ML models to forecast treatment effects 

based on personalized attributes. This increases the trustworthiness of drug recommendation with ML. 

 

Boopathi Raj & Murganoor [5] discussed how AI and ML interpret patient-specific genetic information to tailor therapies. The 
paper highlights neural networks in the prediction of treatment responses and outcome. 

 

Lee et al. [6] Used ML to Predict Influenza Infection developed ML models such as XGBoost to predict influenza in individuals 

with flu-like symptoms. Validation was shown by high performance and accuracy in real-world clinical conditions. 

 

Wolk et al. [7] Used ML to Identify At-Risk Influenza Patients trained ML classifiers to flag unvaccinated patients for severe 

influenza complication risk, thus enabling targeted prevention interventions. 

 

Amiroch et al. [8] Used ML for Predicting Antiviral Compounds Against H9N2 Influenza used ML algorithms to filter and 

predict antiviral compounds against avian influenza A/H9N2. Facilitates targeted treatment based on virus protein structure. 

 

Borkenhagen et al. [9] Used ML for Prediction of Influenza Genotype to Phenotype scanned 49 studies that applied ML to predict 

phenotypes (e.g., virulence, resistance) from influenza genomic sequences, highlighting the importance of genetics in individualized 

treatment. 

 

Elhabyan et al. [10] Used Genetic Variants in Host Response to Influenza meta-analysis of research correlating host genetic 

variations with influenza severity. It favors the application of genomics to personalize antiviral interventions according to patient 

vulnerability. 

 

Cheng et al. [11] Ensembled ML Models for Influenza Forecasting utilized ensemble ML models to predict influenza trends in 

Taiwan. Their method enhanced real-time forecasting, supporting clinical readiness and public health response. 

Lin et al. [12] Used ML Predicting Mortality in Critically Ill Influenza Patients applied XGBoost to forecast 30-day mortality in 

critically ill flu patients. It was superior to conventional scores and may direct individualized ICU management. 

 

Mao et al. [13] Introduced Medication Recommendation via Graph Convolutional Network proposed a graph neural network to 

recommend personalized medicine and impute lab tests from heterogeneous clinical data effectively. 

 

 

Kalinin et al. [14] Used Deep Learning for Pharmacogenomics demonstrated how pharmacogenomics is possible using deep 

learning to predict drug response. The research sets the stage for AI-based personal dosing systems. 

 

Simon et al. [15] identified genomic variants of influenza A(H3N2) associated with disease severity. Results support genomic- 
guided treatment strategies and antiviral targeting. 

 

 

Author(s) Year Tech Used Outcome Strengths Limitations 

Chen et al. [1] 2025 Deep Learning 

(CNN, LSTM) 

Predicted severe 

influenza with 

Large-scale multi- 

center data; real- 

Model requires 

extensive clinical 

   
AUC > 0.82 time detection input 

Zhu et al. [2] 2024 Kernel-Assisted 

Learning 

Estimated 

individualized dose 

recommendations 

Robust to outliers; 

handles non- 

linear relations 

Tested mainly in 

simulations 

Li et al. [3] 2024 CausalMed 

(causality-based 

model) 

Personalized and 

safer medication 

recommendations 

Incorporates 

patient history 

and causal 

reasoning 

Still experimental; 

limited clinical 

validation 
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Feuerriegel et al. 

[4] 

2024 Causal Machine 

Learning 

Predicted 

treatment-specific 

outcomes 

Incorporates 

causal reasoning 

into ML decisions 

Complex 

modeling; needs 

more clinical 

testing 

Boopathi Raj & 

Murganoor [5] 

2023 Neural Networks Personalized 

treatments using 

genomic profiles 

Highlights role of 

AI in genomic 

medicine 

Theoretical; lacks 

experimental 

validation 

Lee et al. [6] 2022 XGBoost, Logistic 

Regression 

Accurate flu 

diagnosis from 

symptoms 

High sensitivity 

and specificity 

May not 

generalize across 

populations 

Wolk et al. [7] 2022 Random Forest, 

Logistic 

Regression 

Identified 

unvaccinated at- 

risk flu patients 

Effective for 

public health 

targeting 

Focus on 

vaccination risk, 

not treatment 

personalization 

Amiroch et al. [8] 2022 ML for Drug 

Target Prediction 

Predicted antiviral 

compounds for 

H9N2 influenza 

Potential drug 

discovery aid for 

flu treatment 

Limited to avian 

strain; lacks 

patient-specific 

clinical 

Borkenhagen et al. 

[9] 

2021 ML model ML links genotype 

to phenotype in 

influenza 

Comprehensive 

review of 49 

studies 

Lack of 

standardization 

among models 

Elhabyan et al. 

[10] 

2021 Meta-analysis Host genetics 

influence flu 

severity 

Supports 

personalized 

interventions 

based on genetics 

Meta-analytical; 

no new 

experimental data 

Cheng et al. [11] 2020 Ensemble ML 

(RF, Boosting) 

Accurate flu trend 

prediction in 

Taiwan 

Real-time, 

accurate, publicly 

applicable 

Location-specific 

dataset 

Lin et al. [12] 2020 XGBoost Predicted ICU 

mortality for flu 

patients 

Clinical utility 

proven in critical 

care settings 

Limited to one 

hospital system 

Mao et al. 
(MedGCN) [13] 

2019 Graph 
Convolutional 

Networks 

Personalized 
medication and lab 

test imputation 

Novel integration 
of graph-based 

relationships 

Data sparsity 
issues in EHR 

Kalinin et al. [14] 2018 Deep Learning Stratified patients 

and predicted drug 

response 

Detailed DL 

application in 

pharmacogenomic 

Need for clinical 

validation 

    
s 

 

Simon et al. [15] 2017 Genome 

Sequencing + 

Analytics 

Identified markers 

linked to severe 

H3N2 cases 

Enables antiviral 

targeting; 

supports genomic 

guidance 

Specific to H3N2 

subtype only 

 

III. PROPOSED METHODOLOGY 

 

3.1 Data Collection and Preprocessing 

 

Lacking comprehensive datasets that include genetic and clinical data in addition to precise treatment outcomes for influenza 

patients, we created a synthetic dataset based on 
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well-established pharmacogenomic principles and clinical guidelines. We created the dataset using a rule-based strategy 

grounded in current literature regarding genetic factors affecting susceptibility to influenza and antiviral drug response. 

 

The synthetic dataset comprised 1,500 simulated patient profiles with the following features: 

 

3.1.1. Genetic markers: 

1. CYP2D6 activity phenotype (poor, intermediate, normal, or ultrarapid metabolizer) 

2. IFITM3 rs12252 genotype (CC, CT, or TT) 

3. IL17 expression level (continuous value) 

4. ACE2 receptor density (continuous value) 

5. HLA type (A, B, C, DR, or DQ) 

3.1.2. Clinical factors: 

1. Age (years) 

2. Sex (M/F) 

3. Weight (kg) 

4. Height (cm) 

5. BMI (calculated) 

6. Liver function (continuous value representing enzyme levels as a ratio to normal) 

7. Kidney function (continuous value representing glomerular filtration rate as a ratio to normal) 

8. Symptom severity (scale 1-10) 

9. Body temperature (°C) 

10. Days since symptom onset 

 

The dataset was split into training (80%) and testing (20%) sets, with stratification to ensure balanced representation of 

medication classes. 

Table 2: Features of Simulated Patient Profile in Datasheet 

Genetic Markers Clinical Factors 

CYP2D6 activity phenotype Age (years) 

IFITM3 rs12252 genotype (CC, CT, or TT) Sex (M/F) 

IL17 expression level (continuous value) Weight (kg) 

ACE2 receptor density (continuous value) Height (cm) 

HLA type (A, B, C, DR, or DQ) BMI (calculated) 

 Liver function (continuous value representing enzyme 

levels as a ratio to normal) 

 Kidney function (continuous value representing 

glomerular filtration rate as a ratio to normal) 

3.2 Feature Engineering 

Several derived features were calculated to enhance the predictive capabilities of our models: 

3.2.1 BMI was calculated from height and weight measurements 

3.2.2 Metabolism factors were derived from CYP2D6 activity classifications 

3.2.3 Organ function adjustment factors were calculated from liver and kidney function values 

3.2.4 Symptom-based severity factors were derived from symptom severity scores and body temperature 

 

All continuous variables were standardized to zero mean and unit variance, while categorical variables were encoded using one- 

hot encoding to facilitate model training. 

 

3.3 Model Architecture 

We developed a two-stage machine learning system (Figure 1): 
3.3.1 Medication Recommendation Model: A Random Forest classifier to determine the most appropriate 

medication class (oseltamivir, zanamivir, baloxavir, or supportive care only) based on patient 

characteristics. 

3.3.2 Dosage Optimization Model: A Random Forest regressor trained separately to predict the optimal 

medication dosage for patients requiring pharmacological intervention. 

 

Both models utilized the scikit-learn implementation of Random Forest algorithms with 100 estimators and were incorporated 

into a pipeline that included preprocessing transformers to ensure consistent handling of new patient data during inference. 
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Figure1. Architecture of the ML model 

3.4 Model Training and Evaluation 

 

The medication recommendation model was trained on all available features with class weights normalized to address possible 

imbalance in the frequency of medication recommendations. 

Model performance was assessed using accuracy, precision, recall, and F1-score metrics. 

 

The model was trained on instances only of medication recommended (excluding supportive care cases). Performance was 

measured by coefficient of determination (R²), mean absolute error (MAE), and root mean squared error (RMSE). 

 

Feature importance analysis was also performed on both models to determine the factors that have the greatest impact in medication 

choice and dosage determination. 

3.5 Prediction System Implementation 

We developed a comprehensive prediction system that integrates both models to provide clinical decision support. The system 

accepts patient genetic and clinical data as input and outputs: 

1. Recommended medication (or supportive care) 

2. Optimized dosage (if medication is recommended) 

3. Treatment instructions formatted according to standard protocols 

 

IV. RESULTS 

 

4.1 Medication Recommendation Model Performance 

Random Forest classifier had 92.7% overall accuracy in predicting the right medication category as a function of patient-specific 

factors (Table 1). High precision and recall were achieved by the model across all medication classes, and slightly impaired 

performance was noted for baloxavir recommendations. 

 

Table 3: Overall performance metrics of the medication recommendation model 
 

Metric Value 

Accuracy 0.927 

Macro F1-score 0.913 

Weighted F1-score 0.926 
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Figure 2 : Graphical representation of Overall performance metrics  

 

Table 4: Class-specific performance metrics of the medication recommendation model 
 

Medication Precision Recall F1-score Support 

Oseltamivir 0.946 0.932 0.939 117 

Zanamivir 0.918 0.936 0.927 94 

Baloxavir 0.887 0.898 0.892 88 

Supportive Care 0.941 0.934 0.937 101 

 

 

 
Figure 3 : Graphical representation of classs – specific performance metrics  

 

4.2 Dosage Optimization Model Performance 

The Random Forest regressor for dose prediction showed robust performance with an R² of 0.89, which means that the model 
accounts for about 89% of the variance in optimal dose values (Table 3). The mean absolute error of 5.8mg implies clinically 

acceptable accuracy for most drugs. 
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Table 5: Performance metrics of the dosage optimization model. 
 

Metric Value 

R2 score 0.890 

Mean Absolute Error 5.8 mg 

Root Mean Squared Error 7.3 mg 

 

 

 

Figure 4 : Graphical  representation of dosage optimization model performance  

 

4.3 Feature Importance Analysis 

Feature importance analysis revealed that both genetic and clinical factors contributed significantly to model decisions . For the 

medication recommendation model, CYP2D6 activity, kidney function, and days since symptom onset emerged as the most 

influential features. For the dosage optimization model, weight, CYP2D6 activity, and age demonstrated the highest importance 

values. 
 

 

Figure 5 : Graphical representation of feature importance for medication recommendation and dosage optimization models 

 

V. CONCLUSION 

In this research, the authors present a machine learning-enabled platform that integrates clinical and genomic information to 

provide personalized treatment and dosage suggestions for influenza. The system performed very well, at 92.7% medication 

recommendation accuracy and 0.89 dosage optimization model R², showing that the integration of pharmacogenomic 

information—such as CYP2D6 enzyme activity and renal function—is feasible into day-to-day antiviral decision-making. 

These results support the feasibility of using AI to decipher complex genetic and physiological interactions and translate them 

into actionable clinical decisions, potentially enhancing treatment efficacy while limiting adverse drug effects. 
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Notwithstanding these promising results, there are a number of limitations that must be appreciated. The reliance on synthetic 

data, although required by the unavailability of high-quality real-world datasets, does not necessarily capture the full richness 

of actual clinical conditions. In addition to this, the model considers only a limited number of existing genetic markers, and its 

dosage rules are reduced based on literature available. Lack of validation against temporally spaced or actual clinical datasets 

also restricts the current generalizability of the system. Future studies need to focus on prospective clinical trials to validate the 

model's safety and efficacy, include a wider array of genetic and viral markers, and consider practical issues for clinical 

implementation. More broadly, this study offers a foundational step toward personalized care in treating infectious diseases,  

and it shows the potential of machine learning in personalizing treatments based on individual patient profiles. 
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