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Abstract: This paper introduces a new machine learning algorithm for tailoring influenza medication choice and dosage adjustment
according to patient-specific genetic markers and clinical features.Growing evidence for pharmacogenomic effects on antiviral
activity requires a more personalized treatment of influenza. We constructed a two-stage machine learning system that initially
chooses the best medication class (neuraminidase inhibitors, endonuclease inhibitors, or supportive care) and then computes
individualized dosage suggestions. Our model includes key genetic elements such as CYP2D6 enzyme activity variants, IFITM3
polymorphisms, and IL17 expression levels, in addition to routine clinical measures. The classifier for medication recommendation
had 92.7% accuracy, and the dosage prediction model showed an R2 of 0.89, indicating strong potential for clinical use. This study
is an important advance toward precision medicine in the treatment of infectious diseases, although clinical validation will be
necessary before its application in clinical practice.

IndexTerms: Influenza, machine learning, pharmacogenomics, personalized medicine, drug dosage optimization, random
forest classifiers, CYP2D6, IFITM3

I. INTRODUCTION

Influenza, a contagious respiratory disease, infects millions globally each year, contributing to significant morbidity and mortality,
with the World Health Organization estimating 3-5 million severe cases annually. Despite the availability of antiviral drugs and
vaccines, their efficacy varies significantly due to differences in individuals’ genetic composition, medical conditions, age, and
other clinical factors. Personalized medicine seeks to customize disease treatment to an individual patient’s unique characteristics.
Unlike generic treatment regimens, personalized approaches consider a patient’s genetic makeup and clinical history to determine
the most effective drug and dosage. This method can improve treatment outcomes, reduce side effects, and avoid ineffective
medications. Growing evidence for pharmacogenomic effects on antiviral activity necessitates a more personalized approach to
influenza treatment [10]. Host genetic variations, such as those in IFITM3 and HLA genes, have been shown to influence influenza
severity and treatment response, supporting the need for personalized antiviral interventions [10]. Arn Machine learning models,
such as XGBoost and neural networks, have demonstrated high accuracy in predicting influenza outcomes and tailoring treatments
based on patient-specific data [6, 5]. Causal machine learning approaches have further enhanced the reliability of personalized
treatment recommendations by accounting for patient health states and clinical history [4]. In recent years, machine learning, a
subset of artificial intelligence, has become a vital tool in healthcare. Machine learning algorithms can extract meaningful patterns
from large, complex datasets and generate predictions. In influenza treatment, machine learning enables the development of models
that predict a patient’s response to various medications and dosages based on their genetic and clinical data.
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Il. LITERATURE REVIEW

Chen et al. [1] designed a deep learning model with 87 hospital clinical data to identify severe cases of influenza. The model was
highly accurate in predicting severe cases of influenza (high AUC >0.82), which favored early detection and improved allocation
of treatment.

Zhu et al. [2] implemented a kernel-based learning model for personalized dose recommendations. The model worked well in
simulations, enhancing drug safety and tailored treatment outcomes.

Li et al. [3]: Causality-Based Medication Recommender System presents a causal model with patient health states and treatment
history to produce safer and more precise individualized medication plans.

Feuerriegel et al. [4] Causal Machine Learning for Treatment Effects investigated causal ML models to forecast treatment effects
based on personalized attributes. This increases the trustworthiness of drug recommendation with ML.

Boopathi Raj & Murganoor [5] discussed how Al and ML interpret patient-specific genetic information to tailor therapies. The
paper highlights neural networks in the prediction of treatment responses and outcome.

Lee et al. [6] Used ML to Predict Influenza Infection developed ML models such as XGBoost to predict influenza in individuals
with flu-like symptoms. Validation was shown by high performance and accuracy in real-world clinical conditions.

Wolk et al. [7] Used ML to Identify At-Risk Influenza Patients trained ML classifiers to flag unvaccinated patients for severe
influenza complication risk, thus enabling targeted prevention interventions.

Amiroch et al. [8] Used ML for Predicting Antiviral Compounds Against HON2 Influenza used ML algorithms to filter and
predict antiviral compounds against avian influenza A/HIN2. Facilitates targeted treatment based on virus protein structure.

Borkenhagen et al. [9] Used ML for Prediction of Influenza Genotype to Phenotype scanned 49 studies that applied ML to predict
phenotypes (e.g., virulence, resistance) from influenza genomic sequences, highlighting the importance of genetics in individualized
treatment.

Elhabyan et al. [10] Used Genetic Variants in Host Response to Influenza meta-analysis of research correlating host genetic
variations with influenza severity. It favors the application of genomics to personalize antiviral interventions according to patient
vulnerability.

Cheng et al. [11] Ensembled ML Models for Influenza Forecasting utilized ensemble ML models to predict influenza trends in
Taiwan. Their method enhanced real-time forecasting, supporting clinical readiness and public health response.

Lin et al. [12] Used ML Predicting Mortality in Critically 11l Influenza Patients applied XGBoost to forecast 30-day mortality in
critically ill flu patients. It was superior to conventional scores and may direct individualized ICU management.

Mao et al. [13] Introduced Medication Recommendation via Graph Convolutional Network proposed a graph neural network to
recommend personalized medicine and impute lab tests from heterogeneous clinical data effectively.
Kalinin et al. [14] Used Deep Learning for Pharmacogenomics demonstrated how pharmacogenomics is possible using deep

learning to predict drug response. The research sets the stage for Al-based personal dosing systems.

Simon et al. [15] identified genomic variants of influenza A(H3N2) associated with disease severity. Results support genomic-
guided treatment strategies and antiviral targeting.

Author(s) Year Tech Used Outcome Strengths Limitations
Chenetal. [1] 2025 Deep Learning Predicted severe Large-scale multi- | Model requires
(CNN, LSTM) influenza with center data; real- | extensive clinical
AUC > 0.82 time detection input
Zhu etal. [2] 2024 Kernel-Assisted Estimated Robust to outliers; | Tested mainly in
Learning individualized dose | handles non- simulations
recommendations linear relations
Lietal [3] 2024 CausalMed Personalized and Incorporates Still experimental;
(causality-based safer medication patient history limited clinical
model) recommendations and causal validation
reasoning
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Feuerriegel et al. 2024 Causal Machine Predicted Incorporates Complex
[4] Learning treatment-specific causal reasoning | modeling; needs
outcomes into ML decisions | more clinical
testing
Boopathi Raj & 2023 Neural Networks Personalized Highlights role of | Theoretical; lacks
Murganoor [5] treatments using Al in genomic experimental
genomic profiles medicine validation
Lee et al. [6] 2022 XGBoost, Logistic | Accurate flu High sensitivity May not
Regression diagnosis from and specificity generalize across
symptoms populations
Wolk et al. [7] 2022 Random Forest, Identified Effective for Focus on
Logistic unvaccinated at- public health vaccination risk,
Regression risk flu patients targeting not treatment
personalization
Amiroch etal. [8] | 2022 ML for Drug Predicted antiviral | Potential drug Limited to avian
Target Prediction compounds for discovery aid for | strain; lacks
HINZ2 influenza flu treatment patient-specific
clinical
Borkenhagenetal. | 2021 ML model ML links genotype | Comprehensive Lack of
[9] to phenotype in review of 49 standardization
influenza studies among models
Elhabyan et al. 2021 Meta-analysis Host genetics Supports Meta-analytical,
[10] influence flu personalized no new
severity interventions experimental data
based on genetics
Cheng et al. [11] 2020 Ensemble ML Accurate flu trend Real-time, Location-specific
(RF, Boosting) prediction in accurate, publicly | dataset
Taiwan applicable
Linetal. [12] 2020 XGBoost Predicted ICU Clinical utility Limited to one
mortality for flu proven in critical | hospital system
patients care settings
Mao et al. 2019 Graph Personalized Novel integration | Data sparsity
(MedGCN) [13] Convolutional medicationand lab | of graph-based issues in EHR
Networks test imputation relationships
Kalininetal. [14] | 2018 Deep Learning Stratified patients Detailed DL Need for clinical
and predicted drug | application in validation
response pharmacogenomic
S
Simon et al. [15] 2017 Genome Identified markers | Enables antiviral | Specific to H3N2
Sequencing + linked to severe targeting; subtype only
Analytics H3N2 cases supports genomic
guidance

I11. PROPOSED METHODOLOGY

3.1 Data Collection and Preprocessing

Lacking comprehensive datasets that include genetic and clinical data in addition to precise treatment outcomes for influenza
patients, we created a synthetic dataset based on
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well-established pharmacogenomic principles and clinical guidelines. We created the dataset using a rule-based strategy
grounded in current literature regarding genetic factors affecting susceptibility to influenza and antiviral drug response.

The synthetic dataset comprised 1,500 simulated patient profiles with the following features:

3.1.1. Genetic markers:
1. CYP2DE6 activity phenotype (poor, intermediate, normal, or ultrarapid metabolizer)
2. IFITM3rs12252 genotype (CC, CT, or TT)
3. IL17 expression level (continuous value)
4. ACE?2 receptor density (continuous value)
5. HLAtype (A, B, C, DR, or DQ)
3.1.2. Clinical factors:
1. Age (years)
2. Sex (M/F)
3. Weight (kg)
4. Height (cm)
5. BMI (calculated)
6. Liver function (continuous value representing enzyme levels as a ratio to normal)
7. Kidney function (continuous value representing glomerular filtration rate as a ratio to normal)
8. Symptom severity (scale 1-10)
9. Bodytemperature (°C)
10. Days since symptom onset

The dataset was split into training (80%) and testing (20%) sets, with stratification to ensure balanced representation of
medication classes.
Table 2: Features of Simulated Patient Profile in Datasheet

Genetic Markers Clinical Factors
CYP2D6 activity phenotype Age (years)
IFITM3 rs12252 genotype (CC, CT, or TT) Sex (M/F)
IL17 expression level (continuous value) Weight (kg)
ACE?2 receptor density (continuous value) Height (cm)
HLA type (A, B, C, DR, or DQ) BMI (calculated)
Liver function (continuous value representing enzyme
levels as a ratio to normal)
Kidney function (continuous value representing
glomerular filtration rate as a ratio to normal)

3.2 Feature Engineering
Several derived features were calculated to enhance the predictive capabilities of our models:
321 BMI was calculated from height and weight measurements
3.22  Metabolism factors were derived from CYP2D6 activity classifications
3.2.3  Organ function adjustment factors were calculated from liver and kidney function values
3.24  Symptom-based severity factors were derived from symptom severity scores and body temperature

All continuous variables were standardized to zero mean and unit variance, while categorical variables were encoded using one-
hot encoding to facilitate model training.

3.3 Model Architecture
We developed a two-stage machine learning system (Figure 1):
331 Medication Recommendation Model: A Random Forest classifier to determine the most appropriate

medication class (oseltamivir, zanamivir, baloxavir, or supportive care only) based on patient
characteristics.

3.32 Dosage Optimization Model: A Random Forest regressor trained separately to predict the optimal
medication dosage for patients requiring pharmacological intervention.

Both models utilized the scikit-learn implementation of Random Forest algorithms with 100 estimators and were incorporated
into a pipeline that included preprocessing transformers to ensure consistent handling of new patient data during inference.
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Figurel. Architecture of the ML model
3.4 Model Training and Evaluation

The medication recommendation model was trained on all available features with class weights normalized to address possible
imbalance in the frequency of medication recommendations.
Model performance was assessed using accuracy, precision, recall, and F1-score metrics.

The model was trained on instances only of medication recommended (excluding supportive care cases). Performance was
measured by coefficient of determination (R2), mean absolute error (MAE), and root mean squared error (RMSE).

Feature importance analysis was also performed on both models to determine the factors that have the greatest impact in medication
choice and dosage determination.

3.5 Prediction System Implementation

We developed a comprehensive prediction system that integrates both models to provide clinical decision support. The system
accepts patient genetic and clinical data as input and outputs:
1. Recommended medication (or supportive care)

2. Optimized dosage (if medication is recommended)
3. Treatment instructions formatted according to standard protocols

IV. RESULTS

4.1 Medication Recommendation Model Performance
Random Forest classifier had 92.7% overall accuracy in predicting the right medication category as a function of patient-specific
factors (Table 1). High precision and recall were achieved by the model across all medication classes, and slightly impaired
performance was noted for baloxavir recommendations.

Table 3: Overall performance metrics of the medication recommendation model

Metric Value
Accuracy 0.927
Macro F1-score 0.913
Weighted F1-score 0.926
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Figure 2 : Graphical representation of Overall performance metrics

Table 4: Class-specific performance metrics of the medication recommendation model

Medication Precision Recall F1-score Support
Oseltamivir 0.946 0.932 0.939 117
Zanamivir 0.918 0.936 0.927 94
Baloxavir 0.887 0.898 0.892 88
Supportive Care 0.941 0.934 0.937 101
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Figure 3 : Graphical representation of classs — specific performance metrics

4.2 Dosage Optimization Model Performance

The Random Forest regressor for dose prediction showed robust performance with an R2 of 0.89, which means that the model
accounts for about 89% of the variance in optimal dose values (Table 3). The mean absolute error of 5.8mg implies clinically
acceptable accuracy for most drugs.
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Table 5: Performance metrics of the dosage optimization model.

Metric Value

R? score 0.890

Mean Absolute Error 5.8 mg
Root Mean Squared Error 7.3 mg

Dosage Optimization Model Performance

Value

A A

R2 score Mean Absolute Error Root Mean Squared Error

Figure 4 : Graphical representation of dosage optimization model performance

4.3 Feature Importance Analysis

Feature importance analysis revealed that both genetic and clinical factors contributed significantly to model decisions . For the
medication recommendation model, CYP2D6 activity, kidney function, and days since symptom onset emerged as the most
influential features. For the dosage optimization model, weight, CYP2D6 activity, and age demonstrated the highest importance
values.

Feature Importance for Medication Recommendation and Dosage Optimization Models
A. Medication Recommendation Maodel B. Dosage Optimization Model
Age
Weight
Days since symptom onset

Features

Kidney function

CYP2D6 activity

000 005 010 015 020 025 030 035 0.0 0.1 0.2 0.3 0.4
Feature Importance Feature Importance

Figure 5 : Graphical representation of feature importance for medication recommendation and dosage optimization models

V. CONCLUSION
In this research, the authors present a machine learning-enabled platform that integrates clinical and genomic information to

provide personalized treatment and dosage suggestions for influenza. The system performed very well, at 92.7% medication
recommendation accuracy and 0.89 dosage optimization model R2, showing that the integration of pharmacogenomic
information—such as CYP2D6 enzyme activity and renal function—is feasible into day-to-day antiviral decision-making.
These results support the feasibility of using Al to decipher complex genetic and physiological interactions and translate them
into actionable clinical decisions, potentially enhancing treatment efficacy while limiting adverse drug effects.
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Notwithstanding these promising results, there are a number of limitations that must be appreciated. The reliance on synthetic
data, although required by the unavailability of high-quality real-world datasets, does not necessarily capture the full richness
of actual clinical conditions. In addition to this, the model considers only a limited number of existing genetic markers, and its
dosage rules are reduced based on literature available. Lack of validation against temporally spaced or actual clinical datasets
also restricts the current generalizability of the system. Future studies need to focus on prospective clinical trials to validate the
model's safety and efficacy, include a wider array of genetic and viral markers, and consider practical issues for clinical
implementation. More broadly, this study offers a foundational step toward personalized care in treating infectious diseases,
and it shows the potential of machine learning in personalizing treatments based on individual patient profiles.
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