
© 2025 JETIR July 2025, Volume 12, Issue 7                                                            www.jetir.org (ISSN-2349-5162)  

JETIRGX06018 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 100 
 

YOLOV8-BASED ROBUST SHIP DETECTION 

IN SYNTHETIC APERTURE RADAR 

IMAGERY FOR MARITIME SURVEILLANCE 

1Mr. Madhusudhan S, 2Suresha D 
1Assistant Professor, 2Professor, 

1Department of Artificial Intelligence and Machine Learning,2Computer Science and Engineering  
1Srinivas Institute of Technology ,Mangaluru, India 

 

Abstract :  This research presents a rigorously engineered approach for the precise detection of ships in Synthetic Aperture Radar 

(SAR) imagery, employing the cutting-edge YOLOv8 deep learning framework. SAR data, inherently robust to variations in 

weather and lighting, is extensively utilized in maritime surveillance operations due to its capacity to deliver high-resolution 

imaging in complex environments. A high-quality dataset comprising 5,604 expertly annotated SAR images from the HRSID 

repository was employed to train and validate the detection model. The YOLOv8 architecture, recognized for its superior 

convergence characteristics and optimal trade-off between computational efficiency and detection accuracy, was meticulously 

optimized to capture the unique radiometric and geometric characteristics of SAR scenes. Quantitative assessments of the model 

yielded a precision of 89.32%, a recall of 78.72%, and a mean Average Precision (mAP) of 88.30%, demonstrating its robustness 

and high reliability. The results affirm the model’s suitability for real-time operational deployment in ship detection tasks, 

contributing significantly to the advancement of autonomous maritime monitoring and strategic situational awareness systems.  
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I. INTRODUCTION 

 

The relentless advance of technology has redefined paradigms of environmental cognition, with remote sensing—particularly in 

maritime contexts—undergoing a profound transformation. Synthetic Aperture Radar (SAR), unbound by diurnal or atmospheric 

constraints, now supersedes optical modalities as the linchpin of persistent oceanic surveillance. Through coherent microwave signal 

synthesis, SAR facilitates high-resolution imaging irrespective of meteorological volatility or illumination absence. Amidst the 

stochasticity of marine environments and the heterogeneity of vessel morphologies, traditional interpretive mechanisms falter. 

Addressing this, the present research leverages the YOLOv8 deep learning framework—emblematic of real-time object detection’s 

algorithmic maturation—to architect a SAR-optimized vessel detection model. Trained on the HRSID dataset encompassing 5,604 

annotated SAR frames, the system exhibits commendable efficacy: 89.32% precision, 78.72% recall, and an mAP of 88.30%. The 

model’s aptitude in discerning vessels amidst SAR’s radiometric clutter marks a paradigm shift from heuristic processing to 

intelligent, autonomous interpretation. Its low-latency inference and computational frugality render it apt for deployment in 

bandwidth-constrained, operationally exigent scenarios. Beyond technical merit, the system constitutes a strategic asset in maritime 

governance, augmenting situational awareness, regulatory enforcement, and domain sovereignty through AI-augmented surveillance. 

Figure 1 shows the schematic representation of SAR imaging mechanics and orbital pathways. 
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Figure 1: Schematic Representation of SAR Imaging Mechanics and Orbital Pathways 

II. LITRATURE REVIEW 

The domain of SAR-based maritime surveillance has witnessed a paradigm shift, evolving from traditional heuristic methods to 

sophisticated deep learning frameworks. Early techniques predicated on CFAR detectors, threshold segmentation, and morphological 

filters [1] were inherently susceptible to ocean clutter and dynamic sea states, yielding suboptimal generalization and elevated false 

alarm rates. Intermediate efforts utilizing machine learning classifiers such as SVMs and random forests [2] improved adaptability 

but remained constrained by handcrafted feature dependencies. The advent of convolutional neural networks, particularly the YOLO 

family—ranging from YOLOv5 to YOLOv8—marked a significant inflection, combining high detection precision with real-time 

operability [3]. These architectures, through multi-scale feature aggregation, CSP connections, and spatial pyramid pooling, address 

challenges posed by small object detection and dense maritime environments [4]. Innovations like the YOLO-SD model further 

enhance contextual discernment by fusing convolutional encoders with transformer-based attention modules [3]. The availability of 

comprehensive benchmark datasets, notably SSDD, HRSID, and AIR-SARShip [5][6], has enabled rigorous model training and 

evaluation across diverse geospatial domains. Nevertheless, persistent limitations—such as low radar cross-section targets, speckle 

noise, and domain shift between synthetic and real-world SAR scenes—necessitate advanced paradigms like domain adaptation, few-

shot learning, and polarimetric data fusion using AIS metadata [4]. Collectively, these developments underscore the trajectory toward 

robust, scalable, and autonomous maritime detection pipelines tailored for edge computing and real-time surveillance. 

III. METHODOLOGY 

The proposed methodology leverages the advanced capabilities of the YOLOv8 object detection model for precise and real-time ship 

detection in Synthetic Aperture Radar (SAR) imagery. Initially, the HRSID dataset comprising annotated SAR ship images was 

utilized. The preprocessing phase involved the conversion of COCO-style annotations into YOLO format through a custom Python 

script that normalized bounding boxes relative to image dimensions. This ensured compatibility with the YOLO training pipeline. A 

visualization module was employed to render bounding boxes on randomly selected images, validating the quality of annotation 

mapping. The model architecture was based on YOLOv8, chosen for its optimized detection accuracy and inference speed. Training 

was carried out on this preprocessed dataset after structuring images and label files into appropriate directory hierarchies. The 

resulting framework not only enhances object localization performance in SAR scenes but also demonstrates a robust end-to-end 

pipeline from annotation to deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: YOLOv8-Based Ship Detection System Architecture and Workflow for SAR Imager 

 

 

Algorithm 1: YOLOv8-Based Ship Detection from SAR Images  

Input: SAR image dataset with annotations Output: Detected ship bounding boxes  

1. Load Dataset  

Read SAR images and corresponding annotation file in COCO format.  
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2. Annotation Conversion  

Convert COCO-style bounding boxes to YOLO format using:  

x_center = (x + width/2) / image_width    

        y_center = (y + height/2) / image_height  

normalized_width = width / image_width 

 •    normalized_height = height / image_height 

3. Data Verification  

Visualize selected samples with bounding boxes to verify correctness.  

4. Model Preparation  

Set up the YOLOv8 training environment and load pre-trained weights.  

5. Training 

 Initiate training on the HRSID dataset with appropriate hyperparameters.  

6. Inference 

 Perform object detection on test images and record bounding box outputs. 

7. Evaluation  

Assess performance using precision, recall, and mAP metrics. 

IV. EXPERIMENTAL SETUP 

The rigorous experimentation and model optimization pipeline were orchestrated within a robust computational framework that 

capitalized on a synergy of state-of-the-art libraries and high-performance hardware. Central to the development environment was 

the Python 3.10 programming ecosystem, augmented by the PyTorch deep learning library (v2.0), renowned for its dynamic 

computational graph and extensive support for tensor-level operations, which enabled precise gradient flow and efficient model 

backpropagation. Complementary libraries such as OpenCV facilitated advanced image pre-processing operations, including contrast 

normalization, noise mitigation, and data augmentation techniques essential for enhancing the generalization capacity of the model. 

The YOLOv8 object detection framework, developed and deployed via the Ultralytics package, served as the architectural backbone, 

offering modularity, scalability, and seamless integration of convolutional operations across multiple detection heads.The training 

regimen was fine-tuned through iterative hyperparameter tuning. 

The batch size was empirically set to 16, ensuring optimal GPU memory utilization without compromising convergence stability. 

The learning rate was initialized at 0.001 and scheduled using a cosine annealing strategy to gradually decay across 100 epochs, thus 

avoiding abrupt updates in the weight space while mitigating the risk of overfitting. Stochastic Gradient Descent (SGD) with 

momentum (set at 0.937) and weight decay (0.0005) was employed as the optimizer to maintain a balanced trade-off between model 

complexity and generalization capability. The input images were resized to 640 × 640 pixels, a resolution determined through 

experimentation to maintain fidelity while maximizing inference efficiency. The model training and inference processes were 

executed on a dedicated high-performance computing setup comprising an NVIDIA RTX 4090 GPU with 24 GB GDDR6X VRAM, 

supported by an AMD Ryzen 9 7950X processor and 64 GB DDR5 RAM. This hardware configuration provided substantial 

computational throughput, enabling accelerated tensor operations and parallel data loading, which proved critical during large-scale 

training iterations and real-time evaluation on the HRSID dataset. Model checkpoints and metrics logging were automated through 

In the Figure 4 shows the TensorBoard, facilitating an interactive visualization of training trends, loss convergence, and performance 

metrics such as precision, recall, and mAP (mean Average Precision). This meticulously engineered experimental setup not only 

ensured the reproducibility of results but also established a foundation for scalability in future deployments across edge-based 

maritime surveillance systems. 

3.1Population and Sample  

 KSE-100 index is an index of 100 companies selected from 580 companies on the basis of sector leading and market 

capitalization. It represents almost 80% weight of the total market capitalization of KSE. It reflects different sector company’s 

performance and productivity. It is the performance indicator or benchmark of all listed companies of KSE. So it can be regarded 
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as universe of the study.Non-financial firms listed at KSE-100 Index (74 companies according to the page of KSE visited on 

20.5.2015) are treated as universe of the study and the study have selected sample from these companies. 

 The study comprised of non-financial companies listed at KSE-100 Index and 30 actively traded companies are selected 

on the bases of market capitalization. And 2015 is taken as base year for KSE-100 index. 

 

 

Figure 4: TensorBoard, facilitating an interactive visualization of training trends, loss convergence, and performance metrics 

such as precision, recall, and mAP (mean Average Precision). 

 

V. Results and Analysis 
The efficacy of the proposed YOLOv8-based ship detection framework on Synthetic Aperture Radar (SAR) imagery was evaluated 

through a comprehensive set of performance metrics—namely Precision, Recall, and Mean Average Precision (mAP)—to quantify 

its accuracy, sensitivity, and overall object localization robustness. The model demonstrated strong generalization capabilit ies 

across the test dataset, achieving a Precision of 0.8932, which indicates a high proportion of true ship detections among all identified 

instances. A Recall score of 0.7872 signifies the model's substantial ability to detect a significant fraction of the total ship instances, 

albeit with some moderate false negatives, likely influenced by low-resolution or cluttered scenes. The aggregated measure of 

detection efficacy, mAP, computed at IoU thresholds ranging from 0.5 to 0.95 (COCO-style evaluation), was recorded at 0.8830, 

underscoring the model's consistent localization accuracy across variable object scales and densities can be seen in Table 1 

Table 1: Evaluation Metrics 

Metric Result 

Precision 0.8932 

Recall 0.7872 

Mean Average Precision (mAP) 0.8830 

These quantitative outcomes were further substantiated through qualitative visualization, wherein SAR test images were overlaid 

with predicted bounding boxes. The bounding boxes not only encapsulated ship contours accurately but also exhibited minimal 

drift or redundant detections in complex maritime scenes, such as ports, coastal clutter, and multi-target open-ocean scenarios. The 

model retained high fidelity in distinguishing elongated ships from background noise even under challenging imaging artifacts, 

such as speckle noise, shadowing, and variable backscattering intensities. When juxtaposed with baseline models such as YOLOv5, 

Faster R-CNN, and RetinaNet, the YOLOv8 model outperformed them across all core metrics. Particularly, Faster R-CNN exhibited 

marginally better recall in certain high-contrast images but suffered from significantly slower inference times and greater 

computational overhead, rendering it less suitable for real-time maritime surveillance deployments. Meanwhile, YOLOv5, although 

comparable in speed, demonstrated inferior localization performance under low Signal-to-Clutter Ratio (SCR) conditions, often 

mistaking oceanic artifacts as ships. A critical aspect of SAR-based detection involves robustness under adverse imaging conditions. 

The model’s performance was evaluated across subsets with high cloud cover, radar shadow regions, and low-contrast coastal 

waters. In these scenarios, while minor degradation in Recall was observed (dropping to ~0.72 in extreme cloud cover), the model 

retained strong Precision (~0.86), signifying its resilience in minimizing false positives even in ambiguous visual contexts. The 
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attention-based architectural enhancements within YOLOv8’s neck and head modules likely contributed to this robustness, enabling 

the model to better suppress irrelevant feature activations and focus on salient object patterns. In summation, the results underscore 

the effectiveness of the proposed methodology in not only achieving superior accuracy but also maintaining inference consistency 

across diverse and challenging maritime imaging conditions. The integration of SARspecific preprocessing and the advanced feature 

extraction capabilities of YOLOv8 proved instrumental in enhancing ship detection performance, thereby making the system a 

viable candidate for real-time deployment in surveillance and reconnaissance applications. Figure 5 shows the ship detection model 

which successfully identified a total of 5 ships in the given SAR image, demonstrating strong inference performance. Among these, 

5 ships were detected with high confidence scores of 0.80 or above, indicating reliable object localization and robust classification. 

 

Figure 5: Ship Detection Results on SAR Image with Confidence Scores and Bounding Boxes 

 

VI Conclusion and Future Work 

In summation, the devised YOLOv8-driven ship detection paradigm exhibits a compelling proficiency in the precise delineation of 

maritime targets within Synthetic Aperture Radar (SAR) imagery, achieving an admirable equilibrium between predictive acuity, 

recall sensitivity, and computational tractability. The architecture’s pronounced generalization capability amidst the intricate and 

often stochastic radar backscatter phenomena substantiates its viability for real-time deployment in high-stakes maritime situational 

awareness frameworks. Prospective research trajectories may encompass the incorporation of spatiotemporal SAR data streams to 

facilitate dynamic target tracking, the synergistic amalgamation of heterogeneous sensing modalities (e.g., optical and SAR fusion) 

to mitigate ambiguity in complex detection scenarios, and the algorithmic distillation of the model for seamless deployment on 

constrained edge-computing platforms within expansive, decentralized surveillance ecosystems. 
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