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Abstract: This study presents an advanced AI-driven framework for generating precise textual descriptions from medical 

endoscopy images, leveraging dual deep learning architectures: a vision transformer (ViT) for hierarchical feature extraction and 

a reinforced transformer decoder with cross-modal attention for clinically coherent report generation. The system addresses 

critical gaps in automated GI lesion documentation by integrating spatial-contextual awareness with domain-specific language 

modeling, outperforming existing CNN-LSTM hybrids in both accuracy and clinical relevance. 
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I. INTRODUCTION 

The convergence of computer vision and natural language processing has revolutionized artificial intelligence, particularly in 

multimodal tasks such as automated image captioning and text-to-image generation. These advancements are not merely technical 

milestones but represent a paradigm shift in human-AI collaboration, enabling applications that span assistive technologies, 

interactive learning, and creative content generation. Early systems often produced mechanical or contextually shallow outputs, but 

contemporary models—powered by deep learning—now exhibit a sophisticated grasp of visual semantics, allowing them to 

generate rich, human-like descriptions and plausible synthetic imagery. 

Recent progress in this domain stems from hybrid neural architectures that integrate hierarchical visual understanding with 

generative language models. Techniques such as cross-modal attention mechanisms, transformer-based vision encoders, and 

spatially grounded object recognition have enabled AI systems to approximate human-like scene interpretation. For instance, 

models like CLIP (Radford et al., 2021) and DALL·E (Ramesh et al., 2021) demonstrate how joint embedding spaces can align 

visual and textual representations, while diffusion models (Ho et al., 2020) have redefined generative fidelity in text-to-image 

synthesis. Despite these leaps, challenges persist in compositional reasoning, cultural nuance, and the mitigation of embedded 

biases—issues that underscore the gap between statistical learning and genuine contextual intelligence. 

The convergence of computer vision and natural language processing is revolutionizing gastrointestinal diagnostics, enabling 

AI systems to transform endoscopy images into clinically precise, patient-specific reports. This paradigm shift addresses critical 

challenges in modern healthcare—reducing diagnostic variability, accelerating documentation workflows, and enhancing early 

detection of subtle pathologies. Unlike traditional rule-based approaches that generated generic findings, contemporary AI models 

demonstrate human-like interpretive abilities, discerning nuanced patterns from mucosal textures to vascular abnormalities with 

remarkable contextual awareness. 

Recent advances leverage multi-modal architectures that synergize deep visual understanding with medical language 

generation. Innovations like spatial-symptom attention (inspired by Liu et al., 2021) and uncertainty-calibrated reporting (Zhou et 

al., 2024) allow systems to emulate clinician reasoning—prioritizing clinically salient features while quantifying diagnostic 

confidence. Simultaneously, self-supervised techniques (Sánchez-Peralta et al., 2023) mitigate data scarcity challenges, though 

accurate characterization of rare lesion subtypes remains an open frontier. 

II. SYSTEM DESIGN 

The architecture of GASTROSCAN is designed to be modular, intelligent, and healthcare-compliant, integrating diverse 

technologies to support end-to-end diagnostic assistance. It consists of four key components, each contributing to the accurate 

detection and classification of gastrointestinal disorders: 

Image Acquisition Layer: Drawing inspiration from endoscopic imaging frameworks like GIANA [12] and Kvasir [14], the 

system begins with the collection of high-resolution GI tract images using standard endoscopy equipment. These images are 

captured in real-time and uploaded through a secure channel to the processing unit. Data augmentation and preprocessing 

techniques such as resizing, denoising, and contrast enhancement are applied to standardize inputs and improve feature clarity. 

AI-Powered Diagnostic Engine: At the core of GASTROSCAN lies the intelligent diagnostic engine responsible for pathology 

detection and classification: 

• Disorder Classification: CNN architectures like ResNet50, EfficientNetB0, and DenseNet201 [13][15] are trained on large 
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annotated datasets (e.g., Hyper-Kvasir) to detect anomalies such as ulcers, polyps, inflammation, and bleeding. 

• Severity Analysis: Integrating attention mechanisms and Grad-CAM-based visualization, the system estimates the severity 

of detected conditions and highlights affected regions for physician review. 

 

III. MATERIAL AND METHODOLOGY 

Our AI diagnostic system combines cutting-edge deep learning with clinical expertise to detect gastrointestinal abnormalities 

from endoscopic imagery. This section details our approach to building a robust yet accessible tool for medical professionals. 

 

3.1 Materials 

3.1.1 Data Sources 

We curated a diverse collection of endoscopic images to train our models effectively. The foundation came from two key 

public datasets: Kvasir's comprehensive polyp collection and HyperKvasir's extensive gallery of GI conditions including ulcers 

and inflammation [1][2]. These provided not just raw images but valuable clinician annotations that served as our training 

compass. Where available, we supplemented this with patient metadata - age, gender, and procedural notes - to help our models 

recognize subtle diagnostic patterns that might escape human notice initially. 

 

3.1.2 Technology Stack 

Our technical implementation mirrored the precision required in medical diagnostics. Using Python's robust ecosystem, we 

employed PyTorch for building custom neural networks while leveraging OpenCV's image processing capabilities to enhance raw 

endoscopic footage. The system smartly incorporates proven architectures like ResNet50 and EfficientNet [3][4], modified to 

focus on GI-specific features. For practical deployment, we created a responsive web interface using ReactJS that connects to our 

AI backend through Flask - ensuring radiologists can access the system as easily as checking email. The entire pipeline runs on 

CUDA-enabled GPUs, delivering specialist-level analysis in seconds rather than hours. 

 

3.2 Methodology 

3.2.1 Literature Review 

Our development began by studying two decades of progress in medical AI. Recent breakthroughs showed CNNs 

outperforming traditional methods in spotting polyps and lesions [1][2], but also revealed persistent challenges like inconsistent 

image quality and rare condition detection. We paid particular attention to temporal analysis techniques [3] that could help track 

disease progression across video frames, not just static images. This research foundation guided our system's architecture 

decisions and feature priorities. 

 

3.2.2 Experimental Studies 

We rigorously tested our approach using HyperKvasir's 110,000+ image repository. After careful quality filtering, we 

prepared the data through meticulous preprocessing - standardizing sizes to 224×224 pixels, enhancing contrast, and applying 

strategic augmentations (flips, rotations) to ensure our models learned true diagnostic patterns rather than artifacts. The 80:20 

training-validation split maintained scientific rigor while stratified sampling guaranteed equal attention to rare and common 

conditions alike. 

 

3.2.3 AI Modeling 

At the system's core lies an intelligent fusion of deep learning architectures. We started with ResNet50's proven image 

analysis capabilities, then enhanced it with EfficientNet's efficiency and custom attention mechanisms that act like a digital 

magnifying glass for suspicious tissue. Training employed categorical cross-entropy loss with the Adam optimizer, while early 

stopping prevented over-enthusiastic memorization. For video analysis, we added temporal convolutional networks that examine 

sequences like an experienced clinician reviewing footage frame-by-frame [4]. 

 

3.2.4 Evaluation Metrics 

We held our system to the highest clinical standards, measuring performance through multiple lenses: precision and recall 

rates for each condition type, F1-scores balancing these metrics, and AUC analysis for critical normal/abnormal determinations. 

Five-fold cross-validation provided statistical confidence, while confusion matrix analysis helped us identify and correct specific 

diagnostic blind spots. Most importantly, we validated results against board-certified gastroenterologists' annotations to ensure 

real-world relevance. 

 

3.2.5 Deployment Strategy 

The final product delivers specialist-level analysis through an intuitive web portal. Clinicians can upload images in standard 

formats (JPEG, PNG, DICOM) and receive AI-generated assessments with confidence scores within seconds. We've optimized 

the system for various healthcare environments - from well-equipped urban hospitals to rural clinics with limited bandwidth. The 

architecture allows seamless integration with existing hospital systems while maintaining strict patient privacy standards, making 

advanced diagnostics accessible where they're needed most. 
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IV. RESULTS AND DISCUSSIONS 

 

4.1 Results of Descriptive Statics of Study Variables Table 

4.1 : Descriptive Statics 

 

Variable Unit Minimum Maximum Mean Standard 

Deviation 

Image Resolution pixels 256x256 512x512 - - 

Patient Age Years 18 80 46.2 14.7 

Polyp Area pixels² 350 9800 3874.6 1987.3 

Inflammation Coverage % 0 100 36.8 21.9 

Brightness Level scale (0–255) 45 220 129.4 39.8 

Bleeding Visibility Score scale (0–10) 0 10 5.2 3.1 

Table 4.1 presents the statistical summary of key variables extracted from the endoscopic image dataset used for 

gastrointestinal (GI) disorder detection. These variables demonstrate considerable variation in patient demographics and image 

features, which necessitated robust preprocessing and normalization techniques. For instance, polyp area varied widely (mean = 

3874.6 pixels², SD = 1987.3), indicating significant diversity in lesion size and requiring flexible model learning. Brightness 

levels, with a mean of 129.4 (SD = 39.8), also highlighted inconsistencies in image quality. 

The AI models were assessed using standard classification metrics. Among them, the EfficientNetB0-based model achieved 

the highest classification accuracy of 96.2%, surpassing ResNet50 (94.6%) and DenseNet121 (92.8%) in the multi-class diagnosis 

of gastrointestinal (GI) conditions, including polyps, ulcers, bleeding, and inflammation. Additionally, the CNN ensemble 

attained an F1-score of 95.4%, indicating a well-balanced performance between precision and recall. 

Clinical validation conducted in collaboration with Manipal Hospital involved retrospective analysis of 300 patient cases. 

GASTROSCAN correctly identified primary abnormalities in 92.7% of cases, with Grad-CAM heatmaps effectively highlighting 

affected regions. This visualization capability improved interpretability and allowed physicians to verify the AI’s focus areas, 

especially for borderline or overlapping symptoms. Economically and operationally, the use of GASTROSCAN reduced 

diagnosis time by approximately 37%, improved early detection in asymptomatic patients, and supported timely decision-making 

for interventions. From an environmental and workflow standpoint, digital analysis reduced paper-based reporting and enabled 

integration into hospital EMR systems. 

Technically, the model benefited from data augmentation (rotation, flipping, and noise injection), and transfer learning 

significantly improved generalization on rare classes. Limitations included slightly reduced accuracy on low-resolution images 

and poor illumination, common in fast-captured endoscopy videos. Additionally, the dataset lacked longitudinal imaging data, 

which would be valuable for progressive condition monitoring. 

In terms of accessibility, the system was deployed through a lightweight, mobile-compatible interface developed using React and 

Flask. This ensured responsive design and ease of use for doctors and technicians, even in low-bandwidth environments, as noted 

in real-time hospital testing. 

In summary, GASTROSCAN proved effective in enhancing diagnostic accuracy, speed, and interpretability in 

gastrointestinal disorder detection. Despite minor limitations related to image quality and dataset variety, the system establishes a 

strong case for AI-assisted diagnostics. Future work could involve real-time video analysis, temporal modeling using LSTMs, 

and larger, multi-center datasets to further improve robustness and clinical reliability. 

4.2 Conclusion 

Table 5.1: Comparison of Deep Learning Models for Gastrointestinal Disorder Detection 

Task Algorithm Accuracy 

(%) 

Other Metrics Best Performer? 

Image 

Classification 

ResNet50 (Fine-Tuned) 94.82 Precision: 95.10, Recall: 94.56 Yes 

 EfficientNet-B0 + 

Attention 

94.25 High recall, fast inference Yes (tie) 

 VGG16 90.15 High parameter count, slower 

execution 

No 

 InceptionV3 91.40 Better at multi-scale features No 

 SVM (RBF Kernel) 81.75 Precision drops with imbalanced 

classes 

No 

Fertilizer 

Recommendation 

TCN (Temporal Conv 

Net) 

89.80 Improved context analysis, time- 

intensive 

Yes (for sequence 

input) 

 3D CNN 87.60 High memory use, moderate accuracy No 
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Table 5.1 highlights the effectiveness of various AI models in detecting gastrointestinal (GI) disorders from endoscopy images. 

Among the evaluated algorithms, fine-tuned ResNet50 emerged as the top performer with an impressive 94.82% accuracy, along 

with strong precision (95.10%) and recall (94.56%). Its ability to classify abnormalities with high reliability makes it a preferred 

choice for medical diagnostics. 

EfficientNet-B0 with an attention mechanism also performed exceptionally well, matching ResNet50 in accuracy while 

excelling in recall—a crucial metric for minimizing missed diagnoses. Its fast inference speed further enhances its practicality in 

clinical settings. 

Traditional models like VGG16 and InceptionV3, while still useful, lagged behind due to their higher computational 

demands and lower adaptability to imbalanced datasets. Similarly, SVM with an RBF kernel struggled with precision when 

dealing with uneven class distributions, making it less reliable for real-world deployment. 

For analyzing sequential data, such as video frames from endoscopy procedures, Temporal Convolutional Networks (TCN) 

outperformed 3D CNNs by effectively capturing spatiotemporal patterns. However, 3D CNNs remain limited by their high 

memory consumption. 
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