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Abstract: This work introduces an AI-powered system for real-time crop disease detection and precision pesticide spraying. 

Leveraging deep learning models (CNN) and computer vision, the system accurately identifies diseases from leaf images captured 

by onboard cameras. The robotic platform then performs targeted pesticide application using a smart spraying mechanism, 

optimizing chemical usage and minimizing environmental impact. This work supports sustainable agriculture by integrating AI, 

robotics, and precision farming techniques to enhance crop productivity while minimizing expenses and environmental impact.  
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 I INTRODUCTION  
 

Agriculture is essential to ensuring global food supplies, but the widespread impact of crop diseases continues to reduce harvests 

each year, threatening economic stability and food supply chains. Traditional methods of disease detection rely on manual 

inspection, which is time-consuming, labor-intensive, and often inaccurate. Additionally, conventional pesticide spraying 

techniques are inefficient, leading to excessive chemical usage, environmental pollution, and increased production costs. To address 

these challenges, AI-driven real-time disease detection systems integrated with autonomous pesticide spraying robots have emerged 

as a transformative solution in precision agriculture.  

Plant diseases are caused by fungi, bacteria, viruses, and pests, can devastate entire crops if not detected early. Farmers typically 

identify infections through visual symptoms such as leaf discoloration, lesions, or wilting. However, human observation is subjective 

and may fail to detect diseases at early stages. Moreover, blanket pesticide spraying—where chemicals are uniformly applied across 

fields—results in overuse of agrochemicals, harming beneficial organisms, contaminating soil and water, and increasing pesticide 

resistance in pests. Architectures like CNNs, along with models like YOLO (You Only Look Once) and ResNet have demonstrated 

high accuracy in classifying diseases from leaf images captured via RGB cameras. When combined with robotic systems, these AI 

models enable real-time disease identification and targeted pesticide application, minimizing chemical usage while maximizing 

efficiency.  

A real-time pesticide spraying robot equipped with AI-based vision systems follows a structured workflow to enhance 

agricultural efficiency. The workflow starts by capturing images, where the robot uses high-resolution cameras or multi spectral 

sensors to capture real-time images of plants. These images are gathered either by drones or ground-based robotic vehicles that scan 

crops periodically to monitor disease progression. A pre-trained convolutional neural network (CNN) model, such as VGG16, 

Efficient Net, or MobileNet, processes the captured images to identify disease symptoms.  

 The AI system classifies the type of disease, such as powdery mildew, blight, or rust, and assesses the severity of the infection. 

Based on this assessment, the decision-making component of the AI determines the optimal pesticide dosage and identifies specific 

locations requiring treatment. GPS and computer vision technologies assist the robot in accurately targeting only the infected plants, 

thereby minimizing chemical usage. The autonomous spraying mechanism then comes into play, utilizing precision nozzles, 

variablerate sprayers, or electrostatic spraying systems for efficient pesticide application. These AI-driven pesticide spraying robots 

offer several key benefits: they significantly reduce pesticide usage—by 30 to 60%—thereby cutting costs and minimizing 
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environmental harm; they identify the diseases at an early stage, often before visible symptoms manifest, preventing large-scale 

crop loss; they enhance labor and cost efficiency through automation; and they support data-driven farming by recording disease 

trends to inform future agricultural decisions.        

II. LITERATUREREVIEW  

 

The survey evaluates the recent advances of AI technologies with specific attention on deep learning and machine learning  

methods in plant disease detection using image analysis systems integrated with smart technology. The aim is to consolidate 

methodologies, challenges, and breakthroughs that enhance plant health monitoring technologies.  

Sladojevic et al. [1] reported a custom Convolution Neural Network (CNN) model for the identification of plant diseases  

using leaf images. The model enables early diagnosis without the need for human intervention and was trained on a data containing 

13 different plant disease categories, including healthy leaves, from various crops such as apples, grapes, corn, and tomatoes. The 

CNN architecture incorporated convolution layers, ReLU activation functions, max-pooling layers, and densely connected layers. 

To enhance generalization, the training process included data augmentation tasks like image rotation and zooming, along with image 

resizing and normalization. The model demonstrated an accuracy exceeding 96%, significantly outperforming traditional methods 

that rely on hand-crafted features. These results demonstrate the effectiveness of CNNs for real-time plant health monitoring, 

suitable for deployment on mobile or cloud platforms.   

 In [2], Ferentinos evaluated several CNN architectures for identifying the disease of plants using a comprehensive dataset  

comprising 87,848 images representing 25 diseases and healthy leaf samples across 58 plant species. The research evaluated the 

performance of Alex Net, Google Net, VGG, and a custom CNN model was trained from scratch. Among these, the custom CNN 

achieved the highest accuracy of 99.53%. While larger models like VGG demonstrated superior performance, they also required 

significantly longer training times. A slight drop in accuracy was observed when the models were tested on real-world field images, 

attributed to image noise and variability. The findings highlight that with sufficiently large and diverse datasets, deep CNNs can 

provide precise plant disease identification, supporting their application in agricultural monitoring systems.Deep Learning V/S 

Traditional Machine Learning. In this paper [3] by, Brahimi et al. conducted a comparative study between deep learning (DL) and 

traditional machine learning (ML) approaches for plant disease classification using a dataset, comprising over 50,000 labeled images 

spanning 14 crops and 26 diseases. Traditional ML models, including Support Vector Machines (SVM), k-Nearest Neighbors 

(kNN), and Random Forests, were trained using hand-crafted features such as color, texture, and shape. In contrast, DL models such 

as Alex Net, VGGNet, and Google Net were used for automatic feature extraction and classification. The results showed that 

convolution neural networks (CNNs) consistently achieved accuracies exceeding 99%, whereas traditional ML models achieved 

between 80% and 90%. Additionally, DL models demonstrated better generalization capabilities and greater robustness to noise. 

The study concluded that DL methods are superior for plant disease classification, provided that a sufficiently large dataset is 

available.   

The investigation by Fuentes[4] and collaborators presented a meta-review analyzing more than 100 studies that assessed  

multiple machine learning (ML) and deep learning (DL) approaches for disease detection. The evaluation discovered that 

convolution neural networks (CNNs) demonstrated superior performance when compared to traditional ML approaches in both 

accuracy and scalability. However, traditional ML approaches still hold value, especially in scenarios with less data or computational 

resources. The study also highlighted the performance of hybrid models—such as those combining image segmentation with ML—

in improving robustness and diagnostic reliability. Despite these advancements, key challenges remain, including dataset imbalance, 

the scarcity of labeled field data, and difficulties in achieving real-time deployment. The authors concluded that while AI and 

computer vision have significantly enhanced agricultural diagnostics, further work is needed to enable effective field-level 

implementation. A machine learning model—based on Support Vector Machines (SVM) or decision trees—is used to classify plant 

diseases. The system's microcontroller processes the data in real-time and controls the pesticide spraying mechanism accordingly. 

A mobile dashboard enables user interaction and system monitoring. The results demonstrated a reduction in pesticide usage by up 

to 40% while maintaining a disease classification accuracy exceeding 90%. The study concluded that the integration of AI and IoT 

enables sustainable and scalable solutions for modern agriculture.  

Key Findings and Trends 
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✓ Deep Learning Superiority: CNNs dominate in accuracy, feature learning, and scalability for plant disease detection.  

✓ Classical ML Value: ML remains viable in limited-data or low-power contexts.  

✓ Dataset Dependency: DL models require diverse, annotated datasets for generalization. ✓Deployment Challenges  

✓ Field image variability (lighting, noise).  

✓ Need for lightweight, mobile-compatible models.  

✓ IoT Integration: Enhances real-time monitoring and precision application of agrochemicals.  

✓ Hybrid Techniques: Improve robustness by combining traditional CV methods with AI.  

✓ Evaluation Metrics: Standardized benchmarking is needed for cross-study comparisons.  

 

III. Methodology  

 

This section outlines the data collection, pre-processing, model selection, and system integration strategies used to develop a deep 

learning-based system, that assess the plant health, with autonomous pesticide spraying capabilities. The aim is to detect diseases 

in Basale (Malabar spinach) and Red Amaranth (Red Spinach) using a custom dataset and deploying the trained model on an 

ESP32based robotic car having a camera.  

Leaf images were manually collected from local farms and gardens in the Mangaluru region, focusing on two plants of interest: 

Basale (Malabar Spinach), Red Amaranth (Red Spinach), Green Amaranth (Red Spinach), and two garden crops. The images were 

captured under natural lighting conditions, utilizing mobile phone cameras and an ESP32-CAM module mounted on a robotic car. 

To create a well-organized dataset, the images were categorized into three classes based on observational evaluation and consultation 

with agricultural experts. The first category, Healthy, included leaves that exhibited no visible damage or discoloration. The second 

category, Moderately Damaged, consisted of leaves showing mild spots, edge damage, or early signs of fungal or bacterial infection. 

The final category, Severely Damaged, comprised leaves displaying extensive wilting, holes, discoloration, or necrosis. Each 

category was carefully balanced with an equal number of samples to avoid bias in the dataset. Once collected, the images were 

annotated and organized into separate folders to prepare for supervised training.  

The preprocessing of the images was a crucial step in ensuring the model's efficiency and robustness in real-world conditions. 

The pictures were adjusted to 224×224 pixels to align with the input shape required by the ResNet model. To enhance training speed 

and ensure proper model convergence, the pixel values were normalized to the range [0, 1]. To further improve the dataset and 

reduce chances of overfitting, data augmentation methods were utilized, including rotation, horizontal and vertical flipping, 

zooming, and brightness adjustments. These augmentations helped increase the variability of the dataset. Additionally, noise 

filtering techniques such as Gaussian blurring and median filtering were employed to remove background noise caused by real-field 

conditions. The health states of the leaves—Healthy, Moderate, and Severe—were encoded using one-hot encoding for classification 

purposes.  

 

           

                                                                    Healthy                               Unhealthy  

Figure 1: Basale  
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                                                                  Healthy      Unhealthy  

Figure 2: Red Amaranth  

 

                                                     Healthy                  Diseased  

Figure 3: Garden plant  

The model used for plant health classification was ResNet, which help prevent the vanishing gradient problem in deep networks. 

ResNet was selected for its ability to strike a balance between high performance and computational efficiency. During training, the 

model utilized cross-entropy loss, the Adam optimizer, and learning rate scheduling to optimize the network. A portion of the dataset 

(20%) was reserved for validation, during which metrics such as accuracy, F1-score, and the confusion matrix were tracked. After 

training, the final model was exported in a lightweight format, making it suitable for deployment on embedded systems or edge 

devices.  

To enable real-time detection and autonomous pesticide spraying, a custom-built ESP32-based robotic car was designed, 

featuring several essential components. The ESP32-CAM module was used to capture live images of the leaves for classification. 

The ESP32 microcontroller acted as the control unit, handling tasks such as image capture, inference, and motion control. The motor 

driver and wheels allowed the robotic car to navigate across crop rows with ease, while the pesticide sprayer module was activated 

based on the output of the classification. Depending on the health state of the leaf, the system provided different actions: a green 

light indicated the leaves were healthy, meaning no spraying was necessary; a yellow light signalled moderate damage, prompting 

an optional spraying; and a red light meant the leaf was severely damaged, triggering the automatic spraying of pesticides. The 

model was deployed on a remote server or an edge device connected to the ESP32, allowing the classification results to be sent back 

for the appropriate action to be taken.  

The system followed a clear workflow: the ESP32-CAM captured an image of the leaf, which was then pre-processed and passed 

to the ResNet model, either on-device or through an edge server. After the model predicted the health class of the leaf, the ESP32 

microcontroller interpreted the results and controlled the lights and pesticide sprayer accordingly, ensuring timely and efficient 

treatment of the plants.   
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Figure 4: Process Flow Diagram of proposed system 

 

 

IV. EXPECTED OUTPUT 

 

Based on the literature surveyed and the methodology proposed, several key outcomes are anticipated from the implementation of 

the deep learning-powered system combined with a robotic spraying mechanism. Firstly, the system is expected to give high 

accuracy in classification, with the ResNet CNN model enabling greater than 90% accuracy in classifying plant leaf health into 

categories such as healthy, moderately damaged, and severely damaged, even under real-world field conditions. Secondly, the 

integration of the ESP32-CAM module with real-time inference capabilities should enable the robotic car to capture and analyze 

images on-the-go, allowing it to make immediate, autonomous decisions without requiring human intervention.  

Thirdly, the system is anticipated to significantly reduce pesticide usage by up to 40%. By applying targeted spraying  

based on the severity classification, the system will help reduce unnecessary pesticide application, promoting sustainable 

agricultural practices and minimizing the environmental impact of pesticide use. Additionally, the system's scalability and 

portability are notable benefits. With the implementation of lightweight models and cost-effective hardware, like ESP32 

microcontroller and camera module, the system can be easily scaled to larger fields or adapted to other types of crops, all with 

minimal added cost or complexity.  

 Moreover, the system is expected to improve farmer decision-making. Through a visual alert mechanism that uses colorcoded 

lights, farmers will have easy-to-interpret insights into the health status of their plants. This will enable them to make timely and 

informed decisions regarding treatment and care. Finally, the proposed system will lay the groundwork for autonomous smart 

farming. It will combine computer vision, artificial intelligence to create a comprehensive plant health monitoring and treatment 

framework, paving the way for future autonomous agricultural robots.  
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