

Impact of Artificial Intelligence on job Automation and Employment

Pranali Kubade, Pramod dhamdhere, pranav navale, pranav pawar, H. R. Kulkarni, Sonika Kamthe*

* Author for Correspondence, Email: sonikadalvi9@gmail.com

G H Raisoni College of Arts, Commerce & Science Pune, Maharashtra India.

Abstract:

This paper critically examines the dual-sided structural transformation of global labor markets resulting from the adoption of Artificial Intelligence (AI) and automation. Employing a rigorous Systematic Literature Synthesis and Expository Research Design, the study synthesizes 25 authoritative academic and institutional sources to analyze the core tension between job displacement (Automation Effect) and job augmentation/creation (New Tasks Framework). The analysis confirms that while AI automates routine tasks, the recent emergence of Generative AI (GenAI) has fundamentally shifted the risk to high-skilled cognitive labor, simultaneously highlighting its potential to democratize productivity. The results reveal a significant exacerbation of economic inequality and labor market polarization, necessitating an urgent and transformative skill shift towards human-centric capabilities. The paper concludes that the net outcome of the AI transition hinges on proactive policy interventions, including educational reform and the regulation of Algorithmic Management, to ensure the benefits of this General Purpose Technology lead to inclusive growth rather than widening societal gaps. Future work is recommended to focus specifically on the differential impact and policy efficacy within developing economies.

Keywords: Artificial Intelligence (AI), Automation, Labor Market Polarization, Generative AI (GenAI), Economic Inequality.

1. Introduction

The Emergence of AI as a General Purpose Technology (GPT)

The integration of Artificial Intelligence (AI) and autonomous systems has instigated the most profound structural shift in global labor markets since the dawn of the Information Age. AI, particularly following breakthroughs in deep learning and computational power, has fundamentally established itself as a General Purpose Technology (GPT)[8] akin to electricity or the steam engine. Its pervasive nature means its innovations are applicable across virtually all sectors of the economy [23]. This transformative capacity leads to expectations of massive productivity gains[21] and economic growth, but simultaneously generates deep societal anxieties regarding the future of employment. This paper addresses the core tension between technological progress and its socio-economic consequences.

The Core Tension: Automation vs. Augmentation The academic and policy discourse surrounding AI and labor is polarized by two distinct, yet interacting, economic mechanisms:

1. The Displacement Mechanism (Automation Effect)

The primary concern centers on job displacement—the direct substitution of human labor by intelligent machines. The foundational work by Frey and Osborne (2017) [5] used a task-based methodology to quantify this risk, concluding that a substantial portion of employment, particularly jobs characterized by routine and predictable tasks, is highly susceptible to computerization. Institutional forecasts, such as those

by the McKinsey Global Institute (2017)[6], corroborate this by projecting the large-scale necessity for millions of workers to transition into entirely new occupational categories by 2030. Furthermore, empirical economic analysis, notably by Acemoglu and Restrepo (2020) [12], has provided concrete evidence demonstrating the inverse relationship between the adoption of industrial robots and local labor market employment and wage levels. This line of research suggests that in the short-to-medium term, the displacement effect can be a powerful force contributing to unemployment in specific demographics[2].

2. The Augmentation and Productivity Mechanism (Creation Effect)

A critical counter-narrative, often supported by economic history, emphasizes the concept of labor augmentation and new task creation. Acemoglu and Restrepo (2019)[9] formalized this framework, arguing that technological progress generates entirely new work processes, products, and services that necessitate new forms of human labor, offsetting displacement. Brynjolfsson and McAfee (2014)[1] highlighted that AI's true value is unlocked when it acts as a complement, not a substitute, to human intelligence, allowing workers to focus on tasks requiring creativity, judgment, and emotional intelligence[7]. Therefore, while AI automates tasks, it often redefines and amplifies the complexity and value of the remaining jobs.

The New Frontier: Generative AI and Skill Polarization

The advent of Generative AI (GenAI), including Large Language Models (LLMs), marks a critical inflection point, fundamentally changing the risk profile of workers.

Impact on Cognitive Labor: Earlier automation primarily targeted manual and low-skilled routine tasks. GenAI, however, is disrupting high-skilled cognitive labor (e.g., programming, legal analysis, content creation)[17]. The IMF (2024) [22] highlighted that while roughly 40% of global jobs are exposed to AI, advanced economies face greater exposure among high-skill roles.

Worsening Inequality: This shift contributes significantly to skill polarization and potentially exacerbates economic inequality[13]. Workers who possess the advanced digital skills to effectively utilize GenAI experience substantial productivity gains [18], leading to higher wages, while those unable to adapt face stagnation or displacement. The resultant pressure for continuous reskilling and upskilling is a paramount challenge for both governments and educational institutions[15].

Algorithmic Management: Furthermore, the workplace structure itself is being transformed by Algorithmic Management, where AI oversees performance and decision-making [24], raising ethical and well-being concerns regarding worker autonomy and stress.

Research Problem and Objectives:

Despite extensive research on AI's impact in advanced economies, there remains a critical need for synthesized analysis that fully integrates the dual mechanisms and the recent GenAI disruptions. The primary objective of this paper is to critically examine the net effect of AI-driven automation on employment structure and propose comprehensive policy responses. Specifically, this research aims to:

Synthesize the evidence on the extent of job displacement versus augmentation across various occupational categories. Analyze the immediate and future demands for skill transformation in the workforce. Propose evidence-based policy interventions (e.g., in education, labor law, and social safety nets) required to ensure the benefits of AI-driven productivity are broadly shared and lead to inclusive job creation [19].

2. Literature Review

This literature review systematically synthesizes the key academic, institutional, and policy perspectives regarding the impact of Artificial Intelligence (AI) and automation on job markets and employment structure. The discussion is structured around three dominant themes: the foundational economic theory of displacement versus augmentation, the changing nature of required human capital and skill sets, and the disruptive influence of Generative AI.

The Foundational Economic Conflict: Displacement vs. Augmentation

The core academic conflict in this domain is the net effect of AI—whether the jobs it destroys are offset by the jobs it creates.

A. The Displacement Hypothesis and Quantified Risk

The most impactful work quantifying the threat of automation remains Frey and Osborne (2017) [5], who used a sophisticated methodology to estimate that approximately 47% of total US employment is at high

risk of computerization, with this susceptibility concentrated in occupations involving routine cognitive and manual tasks. Supporting this quantification, the McKinsey Global Institute (2017) [6] projected a massive global labor shift, estimating that between 400 and 800 million global jobs could be displaced by 2030, necessitating large-scale career transitions. From an empirical economic standpoint, Acemoglu and Restrepo (2020)¹[12] provided robust evidence on the causal link between the adoption of industrial robots and a decline in both employment and wages in specific US labor markets, highlighting the concrete impact of automation on reducing labor demand.² This perspective fuels the structural pessimism articulated by Martin Ford (2015) [4] in *Rise of the Robots*, which questioned whether traditional economic mechanisms can manage such rapid technological displacement.

B. The Augmentation Mechanism and New Task Creation

The counter-argument is anchored in historical labor market resilience. Autor (2015)³[2] challenged the notion of mass technological unemployment by arguing that human labor retains a non-routine, complementary component that resists automation.⁴ This was formalized by Acemoglu and Restrepo (2019) [9] with the "New Tasks" framework, which posits that technological change is a source of new task creation that sustains labor demand. The work of Brynjolfsson and McAfee (2014) [1] popularized the necessity of "running with the machine," arguing that the true value of AI is realized when it complements human intellect, leading to higher productivity and value-added work. Daugherty and Wilson (2018) [7] reinforced this through the *Human+Machine* approach, emphasizing that AI augments human decision-making and performance rather than merely substituting for it. Furthermore, Trajtenberg (2018) [8] analyzed AI as a powerful General Purpose Technology (GPT) whose pervasive economic impact[10] drives overall economic growth [21] far beyond immediate job losses. Human Capital Transformation and Policy Imperatives The literature is unanimous: the composition of skills required for work will fundamentally change, driving both opportunities and economic inequality.

A. The Inevitable Skill Shift

The economic consequence of task automation is a profound skill shift. AI automates routine tasks and simultaneously raises the premium on non-routine cognitive skills like complex communication, creativity, and critical thinking⁵[19].⁶ The OECD (2023)⁷[20] and Felten (2021)⁸[14] underscored that continuous upskilling and reskilling is no longer optional but a necessity for economic survival, a challenge particularly acute for older or less-educated workers.⁹ The urgency of this educational response is highlighted by Lamb and Jones (2022) [15] and summarized in the comprehensive review by Georgieff and Wanner (2022) [16], who document the widespread nature of these skill demands. Tacke & Spatt (2024) [23] specifically examine the 'AI-readiness' of the workforce, linking preparedness to successful integration.

B. Economic Polarization and Inequality

The key danger is that productivity gains from AI may not be shared equally. Korinek and Stiglitz (2021)¹⁰[13] provided a detailed analysis of how AI can lead to severe income inequality if its benefits primarily accrue to capital owners and a small elite of high-skilled workers.¹¹ This risk of polarization is echoed by the IMF (2024) [22], which noted that while AI exposure is high globally, the potential for wage increases is concentrated among those who can effectively leverage the technology. Autor, Mindell, & Reynolds (2023)¹²[19] argue that the challenge is not just the quantity of jobs, but building "better jobs" that offer security and dignity in the intelligent machine age.¹³

C. The Rise of Algorithmic Management

Beyond direct task automation, AI is transforming managerial practices.¹⁴ The European Parliament (2025) [24] drew attention to Algorithmic Management, where AI systems execute core supervisory functions, including monitoring, scheduling, and performance evaluation. This practice raises critical ethical and policy concerns regarding the erosion of worker autonomy, increased work intensity, potential algorithmic bias, and its adverse impact on worker well-being and mental health.¹⁵

The Disruptive Force of Generative AI (GenAI)

The latest wave of AI, GenAI, has shifted the focus of automation risk from the factory floor to the office desk, fundamentally altering previous assumptions about job security.¹⁶

Targeting Cognitive Labor: The most salient finding regarding GenAI is its impact on white-collar tasks. Eloundou et al. (2023) [17] found that Large Language Models (LLMs) significantly expose professional occupations (e.g., lawyers, writers, programmers) to automation, a stark contrast to previous waves of automation. Similarly, the Stanford University Digital Economy Lab (2025)¹⁷ [25] observed that entry-level employment for young workers in highly AI-exposed cognitive roles has experienced a significant relative decline, suggesting that entry-level barriers for white-collar work are being automated.¹⁸

Productivity Gains and Skill Floor: Conversely, Noy and Zhang (2023)¹⁹ [18] provided strong experimental evidence that GenAI delivers substantial productivity gains, particularly for less-experienced workers, effectively lowering the skill requirement (the "skill floor") for performing complex cognitive tasks.²⁰ This finding indicates that GenAI could democratize access to high productivity, though this benefit must be balanced against the potential for job compression.²¹

Synthesis and Research Gap

The synthesized literature unequivocally establishes that AI represents an inevitable and dual-edged economic force. The transition is characterized by a shift from the automation of routine manual tasks to the augmentation and automation of cognitive tasks. While the economic literature provides robust models for this transition in technologically advanced economies [5], a critical research gap remains in comprehensively analyzing the specific net effects and optimal policy frameworks (including educational reform [19] and worker regulation [24]) required for developing economies. This paper aims to contribute to filling this gap by synthesizing these global findings into actionable policy insights relevant to contexts with different labor market rigidities and social safety net structures.

3. Methodology

This research paper employs a rigorous and systematic approach to analyze the complex impact of Artificial Intelligence (AI) and automation on global employment structures. Given the broad scope of the research—integrating economic theory, technological projections, and policy analysis—a Systematic Literature Synthesis and Expository Research Design were adopted.

Research Design and Rationale

A. Expository and Descriptive Design

The study utilizes an Expository Research Design to explain the causal relationships between the independent variable (AI and automation adoption) and the dependent variables (changes in employment levels, wage polarization, and skill demands). It is fundamentally descriptive, aiming to interpret existing data rather than generating new empirical data. The primary objective is to move beyond simple description to offer a robust synthesis and interpretation of the diverse findings across major academic and institutional sources.

B. Rationale for Secondary Data

The research relies exclusively on secondary data (peer-reviewed articles, working papers, and authoritative institutional reports) [5]. This choice is justified because:

Complexity and Scale: The phenomenon of AI's impact on global labor is too vast and complex for a primary data study to capture comprehensively.

Projections: Analyzing future employment scenarios inherently requires the use of established economic and econometric models already published by leading institutions [12].

Synthesis Requirement: The core conflict (displacement vs. augmentation) requires synthesizing established theories (e.g., the Task-Based Framework [2]) and comparing contradictory empirical results [9].

Data Collection and Selection Criteria

The data set comprises the 25 high-value reference papers identified in the initial stage. The systematic selection process adhered to the following strict criteria:

Source Authority: Preference was given to publications from established economic organizations (OECD,

IMF [20]), global policy think tanks (McKinsey, WEF [6]), and top-tier academic journals [5].

Thematic Relevance: Only sources directly addressing the nexus of AI, automation, and labor market outcomes (employment, wages, skills) were included [4].

Temporal Scope and Recency: The selection focused heavily on literature published post-2017 (following the publication of the seminal Frey & Osborne paper [5]), ensuring the inclusion of recent analyses on the impact of Generative AI (2023-2025) [17].

Balance of Perspective: References were purposefully chosen to represent both the displacement thesis [4] and the augmentation thesis [7], ensuring a comprehensive and unbiased discussion.

Data Analysis and Synthesis Framework

The collected literature was systematically analyzed using a three-pronged methodological framework to structure the Literature Review and subsequent Discussion.

A. Task-Based Framework Analysis (TBF)

The core structure of the analysis is built upon the Task-Based Framework (TBF), pioneered by Autor [2]. This methodology shifts the focus from the susceptibility of entire *jobs* to the automation and augmentation of specific *tasks* within those jobs.

Application: Each reference was coded to identify whether its findings related to the automation of routine tasks or the augmentation/creation of non-routine cognitive/manual tasks. This allowed for a precise mapping of AI's impact across occupational categories [5].

B. Comparative Effect Analysis (CEA)

A Comparative Effect Analysis was conducted to reconcile the divergent findings regarding the net impact on employment. This involved synthesizing findings from:

Economic Modeling: Comparing quantitative predictions of job losses (e.g., from Goldman Sachs [21]) with models predicting job creation through new tasks [9].

Policy Assessment: Analyzing how international bodies (like the European Parliament [24] and OECD [20]) interpret the risk/opportunity balance, moving beyond simple displacement to focus on necessary policy responses.

4. Results and Discussion

The systematic synthesis of literature reveals that the impact of Artificial Intelligence (AI) on employment is characterized by a complex, dual-sided structural transformation rather than a simple linear process of job elimination. The results necessitate a fundamental re-evaluation of educational, economic, and policy frameworks.

Synthesis of Core Findings (Net Effect Analysis)

The research confirms the existence of two powerful, opposing economic forces operating concurrently in the AI era, resulting in a complex net effect on employment. The Confirmation of Dual Mechanisms. The initial fear of widespread unemployment [4] is countered by strong evidence supporting the creation and augmentation mechanisms [1]. The findings of Frey and Osborne (2017) [5] and the empirical data on robotics from Acemoglu and Restrepo (2020) [12] establish the high risk of job displacement in routine and medium-skill sectors [6]. Conversely, the "New Tasks" framework [9] and the analysis of AI as a General Purpose Technology (GPT) [8] confirm that AI creates demand for new complementary roles, drives productivity [21], and generates new industries [1] (the augmentation effect).

The Generative AI Inflection Point

The rise of Generative AI (GenAI) introduces a new, critical finding: the automation risk has successfully migrated from the factory floor to the office desk. The analysis of Eloundou et al. (2023) [17] confirms that high-skilled cognitive labor (e.g., coding, content creation) is now highly exposed. This finding dramatically alters the displacement risk profile, suggesting that even highly educated workers must fundamentally reskill [14]. However, the experimental results of Noy and Zhang (2023) [18] simultaneously highlight GenAI's potential to democratize productivity by significantly boosting the output of less-experienced workers, effectively lowering the skill floor for complex tasks.

Discussion: Economic and Societal Implications

The combined displacement, augmentation, and GenAI effects lead to several significant economic and societal implications:

A. Exacerbation of Economic Inequality and Polarization

The most critical outcome is the worsening of labor market polarization and economic inequality [13]. The synthesis confirms that the benefits of AI-driven productivity gains primarily accrue to capital owners and a small segment of highly skilled, AI-complementary workers [13].

Skill Premium: AI automation suppresses wages and employment for those performing routine, automatable tasks, while those who can *leverage* AI (possessing non-routine cognitive skills [19]) command a higher skill premium.

Policy Challenge: The findings strongly support the warnings issued by Korinek and Stiglitz (2021) [13], suggesting that without robust policy interventions, AI will amplify income divergence, demanding radical rethinking of social safety nets and tax structures [4].

B. The Urgency of Human Capital Restructuring

The required skill shift is not incremental but transformative. The results underscore that the future of work hinges on human capital that complements AI, focusing on uniquely human traits:

Required Skills: Critical thinking, complex communication, creativity, and adaptability are now the most valuable economic assets [15].

The Educational Imperative: The urgency of this shift places immense pressure on educational systems to move away from rote learning toward project-based, technologically-integrated curricula from an early stage [14]. The research confirms that continuous reskilling and upskilling is a permanent economic feature of the AI age [16].

C. The Governance of Work (Algorithmic Management)

Beyond job loss, AI is redefining the worker-employer relationship through Algorithmic Management [24]. This result has profound implications for labor welfare and rights. The synthesis highlights that while AI tools can optimize scheduling and performance, the practice introduces risks related to surveillance, burnout, algorithmic bias, and the erosion of worker autonomy. This necessitates proactive legal and ethical frameworks to govern the digital workplace [24].

5. Conclusion

The systematic synthesis of literature confirms that Artificial Intelligence (AI) represents an unstoppable, dual-edged economic force that is fundamentally redefining the concept of human work [1]. The research has unequivocally established that the impact of AI is not defined by simple job elimination but by a turbulent structural transition marked by significant displacement in routine tasks [5] and a profound augmentation in non-routine, complex roles [9]. The recent rise of Generative AI (GenAI) has acted as a critical inflection point, extending automation risk from manual labor to high-skill cognitive labor [17], thereby amplifying labor market polarization [13]. The core challenge is shifting the focus from simply adapting to technology to governing technology to ensure equitable and inclusive outcomes [22]. Ultimately, the net outcome—whether AI leads to shared prosperity or heightened inequality—hinges critically on the immediate and strategic policy responses adopted by nations.

6. Discussion of Key Findings

The key findings necessitate a major recalibration of policy. The most immediate concern is the exacerbation of economic inequality [13]. As confirmed by the synthesis, productivity gains from AI tend to accrue disproportionately to capital owners, leaving workers performing automatable tasks vulnerable to wage suppression and displacement [4]. This requires new policy thinking, potentially exploring taxation mechanisms on automation-derived profits to fund universal social safety nets. Furthermore, the mandatory nature of the skill shift cannot be overstated: the workforce requires a rapid transition away from outdated, rule-based learning towards capabilities that complement AI, such as creativity, critical thinking, and emotional intelligence [19]. This transition is non-negotiable for economic survival. Finally, the research underscores the necessity of managing Algorithmic Management [24] to protect worker autonomy and well-being in the increasingly digitized workplace.

Policy Recommendations

Based on the evidence across the 25 reference papers, several strategic policy interventions are crucial. Firstly, there must be a complete overhaul of educational systems to implement national AI-readiness curricula from the ground up, promoting digital literacy and adaptability [14]. Secondly, governments and industries must collaborate to create robust, accessible, and continuous reskilling

frameworks that focus specifically on high-demand, non-routine cognitive skills [15]. Thirdly, labor laws must be updated to explicitly regulate Algorithmic Management, ensuring transparency, fairness, and the protection of worker privacy against constant digital surveillance [24]. Lastly, economic policy must explore innovative measures—like an automation tax or specific taxes on large data-driven profits—to finance these massive educational and social welfare investments, ensuring the benefits of AI are broadly shared [13].

7. Future Works

This research primarily utilized a systematic literature synthesis focused on global trends and economic models. Future work should focus on filling critical research gaps:

Developing Economy Specialization: The vast majority of empirical data focuses on advanced economies [5]. Future research must conduct primary, region-specific studies on the differential impact of AI and GenAI on job creation, wage compression, and social mobility within developing economies, where labor market rigidities and social safety nets are fundamentally different. **Qualitative Impact of GenAI:** Further research is needed to qualitatively assess the psychological impact and changes in job satisfaction resulting from the adoption of GenAI in creative and cognitive professions [17]. **Policy Efficacy Evaluation:** Longitudinal studies are necessary to evaluate the long-term efficacy of various policy interventions currently under discussion (e.g., specific reskilling programs, automation taxes), measuring their true impact on reducing inequality and stimulating net employment growth.

8. Reference

1. Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. *W. W. Norton & Company*. [1]
2. Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. *Journal of Economic Perspectives*, 29(3), 3-30. [2]
3. Bessen, J. (2015). Learning by Doing: The Real Connection between Innovation, Wages, and Wealth. *Yale University Press*. [3]
4. Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless Future. *Basic Books*. [4]
5. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, 114, 254-280. [5]
6. Manyika, J., Chui, M., Miremadi, M., Bughin, J., Lund, S., Corbett, A., & Ko, R. (2017). A future that works: Automation, employment, and productivity. *McKinsey Global Institute Report*. [6]
7. Daugherty, P. R., & Wilson, H. J. (2018). Human+ Machine: Reimagining Work in the Age of AI. *Harvard Business Review Press*. [7]
8. Trajtenberg, M. (2018). AI as a general purpose technology: Some implications for economic growth. *NBER Working Paper 24653*. [8]
9. Acemoglu, D., & Restrepo, P. (2019). Automation and New Tasks: How Technology Affects Labor. *Journal of Economic Perspectives*, 33(2), 3-30. [9]
10. Aghion, P., Jones, B., & Jones, C. I. (2019). Artificial Intelligence and Economic Growth. In The Economics of Artificial Intelligence: An Agenda (pp. 309-346). University of Chicago Press. [10]
11. World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. WEF Report. [11]
12. Acemoglu, D., & Restrepo, P. (2020). Robots and Jobs: Evidence from US Labor Markets.
13. Journal of Political Economy, 128(6), 2188-2244. [12]
14. Korinek, A., & Stiglitz, J. E. (2021). Artificial Intelligence and Economic Inequality. NBER Working Paper 28628. [13]
15. Felten, E. (2021). The effects of artificial intelligence on the labor market: An analysis of skill shifts and occupational change. Brookings Institution Report. [14]
16. Lamb, J., & Jones, R. (2022). Reskilling and Upskilling for the Age of AI. Harvard Business Review. [15]
17. Georgieff, A., & Wanner, I. (2022). Artificial intelligence and employment: A literature review. IZA Journal of Labor Policy, 11(1). [16]

18. Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An Early Look at the Labor Market Impact of Large Language Models. arXiv preprint arXiv:2303.10142.[17]
19. Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. *Science*, 381(6657), 585-592.[18]
20. Autor, D., Mindell, D., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. MIT Task Force on the Work of the Future.[19]
21. OECD. (2023). Artificial Intelligence, Employment and Skills: The Final Frontier? OECD Social, Employment and Migration Working Papers, No. 291.[20]
22. Goldman Sachs Research. (2023). The Potentially Large Effects of AI on Economic Growth.
23. Goldman Sachs Economic Report.[21]
24. IMF. (2024). AI Will Transform the Global Economy. Let's Make Sure It Benefits Humanity.
25. IMF Blog/Policy Paper.[22]
26. Tacke, U., & Spatt, V. (2024). The AI-Readiness of the Workforce: A Conceptual Framework and Empirical Evidence. *Journal of Vocational Behavior*, 142, 103859.[23]
27. European Parliament. (2025). Digitalisation, artificial intelligence and algorithmic management in the workplace: Shaping the future of work. EP Research Paper.[24]
28. Stanford University Digital Economy Lab. (2025). Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence. Stanford Research Report.[25]

