

Impact of Sentence Length on Translation Quality

Kartikesh Anant Khandare, Gauri Jadhav, Kartiki Zarekar, Ketan Pawar, H R Kulkarni, Pranali Sisodiya*

* Author for Correspondence, Email: pranalibjamadar@gmail.com

GH Raisoni College of Arts, Commerce & Science Pune, Maharashtra India.

Abstract

Sentence length plays a fundamental role in determining readability, fluency, and translation quality in both human and machine contexts. It directly affects how information is processed, understood, and reproduced across languages. Short sentences are valued for their clarity and simplicity, allowing readers and translation systems to handle information efficiently. However, excessive brevity can cause fragmented meaning and reduced cohesion. In contrast, long sentences enhance syntactic richness and express complex ideas but often challenge comprehension and computational processing.

In Neural Machine Translation (NMT), sentence length has a measurable impact on performance and accuracy. Short inputs may lead to context loss, while overly long sentences increase computational complexity and risk hallucination errors. Modern Transformer-based models such as BERT and mBART process text through fixed attention windows, making sentence length optimization crucial for translation reliability.

From a human perspective, variation in sentence length improves rhythm, engagement, and rhetorical balance. Studies in education, linguistics, and professional communication reveal that a mixture of short and long sentences enhances both understanding and stylistic quality. This review synthesizes findings across disciplines to demonstrate that no universal ideal sentence length exists; rather, effective translation and writing rely on balance and adaptability.

The insights presented here are essential for educators, linguists, and AI researchers developing systems that promote clarity, coherence, and translation quality across diverse languages and domains.

Keywords :

Sentence length, translation quality, neural machine translation, readability, transformer models, linguistic complexity.

Introduction :

Sentence length has long been recognized as a critical variable influencing readability, comprehension, and translation quality in both human and machine contexts. From early linguistic theories to modern computational frameworks, it serves as a bridge between linguistic structure and cognitive processing. Classical readability formulas such as the Flesch Reading Ease (1948) and Gunning Fog Index (1952) identified a strong correlation between longer sentences and greater reading difficulty. However, these traditional models often overlooked the contextual and stylistic benefits that varied sentence lengths can provide.

In recent decades, the rise of Neural Machine Translation (NMT) has reshaped the discussion of sentence length. Transformer-based models such as BERT, mBART, and GPT architectures

G. H. Raisoni College of Arts, Commerce and Science, Wagholi, Pune, Maharashtra-412207, India.

process text through fixed-length attention mechanisms that are sensitive to input size [14], [16]. Shorter sentences reduce computational overhead and minimize alignment errors but may fragment meaning or lose discourse continuity. Conversely, longer sentences provide richer semantic context yet increase the risk of translation errors, reordering issues, or hallucinations [4], [26]. Thus, sentence length directly impacts both processing efficiency and output quality in translation systems.

From a human perspective, sentence length also affects tone, rhythm, and comprehension. Short sentences enhance clarity and impact, whereas longer ones improve cohesion and allow for detailed argumentation. The challenge, therefore, lies in achieving an effective balance that supports both reader understanding and machine interpretability.

This study aims to integrate insights from education, linguistics, and artificial intelligence to examine how sentence length influences translation quality. Rather than proposing a single ideal length, the paper emphasizes the importance of variation, balance, and context-aware adaptation, ensuring that both human writers and machine systems achieve optimal communicative efficiency and readability.

Objectives :

To evaluate the impact of sentence length on readability and comprehension for human readers

This objective focuses on identifying how different sentence lengths affect human cognition, reading speed, comprehension accuracy, and memory retention. It examines classical readability theories such as the Flesch Reading Ease and Gunning Fog Index, while also incorporating modern psycholinguistic insights that connect sentence length with cognitive load. Through this analysis, the study aims to establish how varying sentence structures contribute to both reader engagement and linguistic clarity, offering insights for educators and writers.

To analyze sentence segmentation strategies in machine translation systems

Here, the research explores how Neural Machine Translation (NMT) systems — including Transformer-based architectures like BERT, mBART, and GPT — process sentences of varying lengths. The goal is to understand how input segmentation and context window size affect translation accuracy, coherence, and semantic retention. This objective also involves examining how short and long sentences influence BLEU scores, TER scores, and context preservation, thereby helping to design more adaptive translation pipelines.

To compare sentence length challenges across professional communication domains, different fields employ distinct linguistic conventions. This objective investigates how sentence length functions in professional contexts such as law, healthcare, journalism, and academia. For instance, legal documents often employ long, complex structures for precision, while journalistic writing favors short, dynamic sentences for clarity. By comparing these domains, the research aims to establish domain-sensitive guidelines that balance readability and informational density, promoting both accessibility and professional integrity.

To identify computational practices for handling sentence length in NMT and SMT models

Machine translation systems face technical constraints related to context size, token limits, and memory attention mechanisms. This objective seeks to identify best practices in algorithmic optimisation — such as dynamic encoding, adaptive tokenization, and length-aware decoding — that improve translation quality. By analyzing recent advances (e.g., Dynamic Programming Encoding [5], hallucination mitigation [4], and length normalization [26]), the study highlights strategies for minimizing performance degradation caused by overly short or long inputs.

To propose interdisciplinary research models linking linguistics, AI, and pedagogy

Language learning, writing instruction, and translation research have traditionally been isolated. This objective promotes an interdisciplinary synthesis that connects linguistic theory, educational methodology, and computational modelling. It proposes frameworks in which AI-assisted writing tools can offer real-time feedback

on sentence variation, helping learners and translators maintain balance between brevity and depth. This vision includes the creation of adaptive readability systems and context-aware translation engines that align sentence structure with user proficiency and communicative goals.

To establish best practices and future directions for sentence optimization

The final objective is to integrate findings across human and machine domains to define best practices for sentence optimization. This includes developing benchmarks, datasets, and guidelines that quantify how sentence length affects readability, translation accuracy, and coherence across languages. Such outcomes will serve as reference standards for AI researchers, linguists, educators, and technical writers, supporting clearer, more effective global communication.

Literature Review :

Early Readability and Linguistic Studies

The earliest investigations into sentence length focused on readability and comprehension. Classic readability metrics such as the Flesch Reading Ease Formula (1948) and Gunning Fog Index (1952) established sentence length as a quantitative indicator of text difficulty. According to these models, shorter sentences tend to improve accessibility because they require less cognitive processing. However, subsequent linguistic research highlighted that readability cannot be reduced to length alone—it also depends on syntactic structure, cohesion, and context [4], [10], [13].

Halliday and Hasan (1976), in their theory of cohesion in English, emphasized that longer sentences enable writers to connect ideas through conjunctions, reference, and ellipsis, thereby improving textual unity. While short sentences increase clarity, excessive brevity can fragment discourse and weaken coherence. Later studies by Nation (2009) and Hyland (2016) confirmed that effective academic writing benefits from variation in sentence length, as this rhythmic alternation sustains reader engagement and highlights key information.

Furthermore, psycholinguistic research has shown that the human brain processes moderately long sentences more efficiently than very short or excessively long ones, provided that syntactic cues are clear. Kintsch's (1998) Construction-Integration Model of comprehension demonstrated that sentence length interacts with working memory capacity and syntactic predictability, influencing reading time and understanding.

Sentence Length in Machine Translation Systems

The development of Machine Translation (MT) introduced a computational perspective to the study of sentence length. Early Statistical Machine Translation (SMT) systems—such as IBM's alignment-based models—often struggled with long sentences due to their limited capacity to handle extended dependencies and reordering. These models operated by aligning phrases across bilingual corpora, and as sentence length increased, the number of possible alignments grew exponentially, reducing translation accuracy.

The transition to Neural Machine Translation (NMT) marked a significant improvement in translation fluency and contextual awareness. However, NMT systems, particularly those based on Transformer architectures, remain sensitive to sentence length. These models encode text into fixed-length vector representations using self-attention mechanisms, which have computational and memory constraints [14], [16]. When sentences are too long, the model's attention capacity becomes saturated, leading to semantic drift, context loss, or hallucinated

outputs, where translations are fluent but factually inaccurate [26].

Research by Koehn and Knowles (2017) demonstrated that translation accuracy tends to decline for inputs exceeding 30 words. Similarly, Tang et al. (2020) found that NMT models perform best with medium-length sentences (15–25 words), as they provide sufficient semantic context without overwhelming the encoder-decoder

framework. In contrast, very short sentences often produce literal, context-free translations, while excessively long ones lead to errors in reordering and lexical selection.

Advances in Neural and Multilingual Translation Models

Recent innovations in large-scale neural models—such as mBART, GPT, NLLB, and MarianMT—have attempted to mitigate length sensitivity by expanding attention windows and incorporating contextual embeddings. The NLLB (No Language Left Behind) initiative by Meta AI (2022) focused on creating length-robust translation systems capable of maintaining accuracy across hundreds of languages. Yet, even these advanced architectures exhibit variations in quality based on input length and linguistic complexity.

Popović (2020) analyzed translation errors in NMT outputs and concluded that sentence segmentation and length normalization significantly improve performance, especially for morphologically rich or low-resource languages. Similarly, Barrault et al. (2022) reported that translation models using adaptive tokenization—adjusting input granularity based on length and syntactic cues—produce more stable results. These findings reinforce the idea that managing sentence length remains crucial, even in high-capacity neural networks.

Pedagogical and Cognitive Perspectives

From a pedagogical viewpoint, sentence length also shapes how translators and language learners develop linguistic competence. Research in Second Language Acquisition (SLA) suggests that exposure to varied sentence structures enhances both comprehension and writing fluency. Learners trained to alternate between short and long sentences exhibit greater flexibility in expression and more accurate translation choices. Hyland (2016) and Grabe (2010) emphasize the importance of teaching sentence variation to balance precision and readability in academic writing.

Cognitive translation studies have extended this discussion to the mental processing load during translation. Alves and Gonçalves (2013) observed that professional translators spend more time on long sentences due to higher syntactic and semantic density. Meanwhile, short sentences reduce decision time but sometimes compromise stylistic cohesion. These observations confirm that sentence length influences not only computational processing but also human translation strategies and pacing.

Integrative Findings and Theoretical Implications

Collectively, the literature supports a consistent conclusion: no universal ideal sentence length exists. Instead, translation quality depends on context, purpose, and text type. Both human and machine translators perform best when sentences maintain a moderate length—long enough to capture meaning, but short enough to ensure clarity and manageability.

Moreover, recent interdisciplinary research is moving toward adaptive frameworks, where translation systems automatically adjust to sentence complexity. By combining linguistic theory, cognitive modeling, and machine learning, these systems could dynamically modify input segmentation to balance semantic completeness and processing efficiency. This convergence of human linguistic insight and artificial intelligence marks a new phase in translation research—one focused not merely on accuracy, but on readability, rhythm, and communicative intent.

In summary, the literature establishes that sentence length is a multifaceted determinant of translation quality. It shapes readability, processing load, cohesion, and machine efficiency. Effective

G. H. Raisoni College of Arts, Commerce and Science, Wagholi, Pune, Maharashtra-412207, India.

translation—whether human or automated—relies on managing sentence length strategically, ensuring that the message remains clear, coherent, and contextually faithful across languages.

Methodology :

Research Framework

This study followed a systematic literature review (SLR) approach inspired by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. The objective was to synthesize a comprehensive understanding of how sentence length influences translation quality, both in human and machine contexts. The review sought to integrate perspectives from linguistics, pedagogy, computational translation, and applied AI, offering a unified framework for analyzing this multifactorial issue.

The research framework was divided into five sequential stages:

Identification of sources – locating relevant research articles, books, and datasets.

Screening and eligibility – removing duplicates and filtering studies that directly addressed sentence length and translation quality.

Data extraction – organizing the literature according to domains such as education, readability, machine translation, and domain-specific writing.

Analysis and synthesis – comparing methods, findings, and interpretations across human and computational studies.

Evaluation – identifying patterns, challenges, and emerging trends to guide future interdisciplinary work.

Data Collection and Selection Criteria

Data was collected from five major academic databases: IEEE Xplore, ACM Digital Library, SpringerLink, Elsevier ScienceDirect, and ACL Anthology. The keywords used for search queries included:

"sentence length and translation quality",

"neural machine translation sentence segmentation", "readability and comprehension",

"AI-assisted writing and linguistics", and

"syntactic complexity in multilingual translation".

These searches generated over 75 research papers published between 2018 and 2025. To ensure quality and relevance, the inclusion criteria required that each selected study: directly examined sentence length or segmentation effects on comprehension or translation, presented empirical data or computational analysis, and was published in peer-reviewed venues.

After removing duplicates and irrelevant studies, **40 papers** were retained for analysis. These covered multiple disciplines:

10 from education and pedagogy,

10 from readability and cognitive linguistics,

10 from machine translation and computational linguistics,

and 10 from domain-specific writing and applied professional studies.

Research Design

The review adopted a mixed-methods analytical design, integrating both quantitative and qualitative techniques to analyze the selected literature.

Quantitative Analysis

Quantitative data were primarily drawn from computational studies that reported numerical evaluation metrics, such as:

BLEU (Bilingual Evaluation Understudy) Score – measures translation accuracy.

TER (Translation Edit Rate) – calculates post-editing distance.

METEOR and COMET Scores – evaluate semantic adequacy.

Readability Indices (Flesch Reading Ease, Gunning Fog Index, SMOG, etc.) – assess textual clarity.

These metrics were normalised to a common scale to facilitate cross-comparison between human readability and machine translation quality. Statistical patterns were identified to observe how sentence length affected performance across systems and languages.

Qualitative Analysis

The qualitative component focused on linguistic interpretation, educational findings, and cognitive feedback from human subjects. Studies in this group examined:

sentence complexity and cohesion in student writing ([10], [13]), user perception of readability ([25], [30]), translator feedback on NMT outputs ([4], [26]), and

editorial preferences in professional communication ([7], [25], [30]).

Through thematic coding and content analysis, recurrent ideas were grouped into categories such as context loss in short sentences, ambiguity in long sentences, and optimal variation for balanced fluency. This dual analysis approach allowed the study to establish both quantitative evidence and qualitative rationale for how sentence length affects comprehension and translation.

Analytical Procedure

The data were processed using a multi-stage evaluation pipeline:

Corpus Compilation:

Relevant datasets from previous studies—such as Europarl, WMT corpora, and educational essays—were analyzed for average sentence length distribution.

Model Assessment:

Reports from NMT architectures (Transformer, BERT, mBART, and NLLB) were reviewed to examine how sentence length affects training time, memory load, and translation accuracy.

Human Readability Tests:

Studies involving real readers or students were examined to identify comprehension thresholds, typically ranging between 10–25 words per sentence for general clarity.

Comparative Mapping:

The results from both human and computational studies were mapped using a cross- domain matrix, showing how sentence length influences understanding, translation efficiency, and readability across fields.

Interpretive Synthesis:

Findings were synthesized to draw correlations between sentence length, cognitive processing, translation accuracy, and reader engagement.

This structured methodology ensured reliability and replicability of insights, allowing the review to connect linguistic theory with computational practice.

Evaluation Parameters

To achieve consistency, five core parameters guided the analysis:

Category	Human Focus	Machine Focus
Readability	Comprehension ease	Text segmentation
Cohesion	Logical connection between ideas	Context retention
Fluency	Smooth sentence flow	Syntactic accuracy
Cognitive Load	Reader's processing effort	Model memory consumption
Translation Accuracy	Semantic equivalence	Contextual integrity
Key Metrics	Flesch Reading Ease, Gunning Fog Index, Discourse Score	BLEU, COMET, TER, METEOR, Attention Weight Patterns

Table 1: Human-focused Vs Machine-focused translation metrics

This dual-parameter approach helped reveal parallels between human readability and machine processing efficiency, showing that both depend heavily on the balance between sentence simplicity and complexity.

Interdisciplinary Integration

The methodology deliberately linked education, linguistics, and AI translation research to uncover cross-cutting patterns. Educational studies informed how sentence length affects writing development, readability studies provided cognitive baselines, and computational models revealed how machines process linguistic structure. By merging these domains, the review produced a holistic understanding of sentence length as both a cognitive phenomenon and a computational constraint.

This integrative design allowed for the creation of a unified model, positioning sentence length as a variable that mediates between human cognitive comprehension and AI model performance. The cross-domain insights were critical for identifying best practices in both teaching language structure and designing adaptive translation systems.

Limitations

While comprehensive, the methodology faced several limitations.

First, many empirical studies lacked direct comparability due to differences in dataset size, language pairs, and evaluation metrics. Second, the review relied on secondary data, which may reflect bias in sample selection or reporting. Third, although qualitative synthesis captured trends, the absence of large-scale experimental

replication limits generalization. Lastly, most computational analyses focused on English-centric corpora, leaving cross-linguistic variability underexplored. Despite these constraints, triangulating evidence from multiple disciplines improved the robustness and validity of the findings.

Ethical Considerations

The study adhered to ethical guidelines for academic review and data handling. No personal or sensitive data were used. All references were properly cited according to IEEE standards. The analysis respected intellectual property rights and ensured transparency in methodology.

Furthermore, the review emphasizes responsible AI practices—highlighting that translation tools should enhance human communication, not replace linguistic diversity or author intent.

Result Analysis :

Education Findings

In educational contexts, the relationship between sentence length and learning outcomes emerged as highly dynamic. Short sentences generally enhance initial reading comprehension by reducing cognitive load and facilitating lexical decoding. However, studies consistently show that exclusive reliance on short forms leads to syntactic stagnation—students fail to develop skills in subordination, coordination, and logical cohesion.

Arfé et al. [10] demonstrated that fifth- and tenth-grade students trained to alternate between short and long sentences displayed greater improvement in both narrative and analytical writing. Similarly, Al Mahmud [13] and Cao [9] found that AI-based feedback systems, such as

Grammarly and Wordtune, encouraged learners to vary their sentence patterns, improving overall fluency scores.

The data summarized in Figure 1 (conceptual graph) illustrates this progression: as average sentence length increases from 8 to 18 words, writing fluency improves proportionally until a saturation point (around 20–22 words), after which comprehension begins to decline.

Interpretation: Moderate-length sentences yield the best results in education—balancing linguistic complexity with cognitive manageability.

Translation Findings (Human and Machine)

In human translation and machine translation (MT) systems, sentence length significantly affects translation quality scores.

Short sentences (≤ 10 words): produce high lexical accuracy but low discourse cohesion.

Moderate sentences (10–25 words): maintain contextual coherence and achieve optimal BLEU scores.

Long sentences (≥ 25 words): increase translation errors, alignment mismatches, and hallucination tendencies.

Xu [4] and Guerreiro [26] both reported that neural models like Transformer and NLLB experience degradation beyond 30-word sequences, where the attention mechanism saturates and contextual embedding weakens.

He [5] introduced Dynamic Programming Encoding (DPE), which reduced long-sentence translation errors by nearly 18% in benchmark tasks.

Quantitatively, across the surveyed literature, the average BLEU score decreased by approximately 15–20% as sentence length doubled from 10 to 25 tokens. Conversely, TER

(Translation Edit Rate) increased linearly with sentence length, indicating greater correction needs for longer inputs.

Interpretation: Moderate-length sentences (15–20 words) yield optimal machine translation outcomes. Excessively short or long sentences disrupt semantic and syntactic alignment.

Readability and Comprehension Findings

Human readability studies confirm that sentence length directly correlates with comprehension difficulty, but only up to a moderate threshold. The Flesch Reading Ease and Gunning Fog Index analyses show that comprehension declines exponentially when average sentence length exceeds 22–25 words. Weiss [25] emphasized that readability depends not just on length but also on lexical cohesion and syntactic variety—a 20-word sentence can be easy if structured simply but challenging if overloaded with clauses.

Leslie [30] found that in healthcare communication, comprehension dropped by 30–40% when sentence length exceeded 25 words, highlighting the importance of concise structures in critical domains.

Interpretation: Readability is a function of both length and structure. Controlled sentence variation improves clarity and retention.

Professional Writing Findings

Law:

Ariai [7] reported that legal writing, often characterized by sentences exceeding 40 words, prioritizes precision but sacrifices accessibility. Simplifying such sentences into logically segmented clauses improved comprehension scores by 27% among non-expert readers.

Journalism: Cao [9] and Weiss [25] observed that journalistic writing performs best when alternating short, impactful sentences (under 12 words) with longer explanatory sentences (20–25 words). This rhythmic pattern sustains engagement and prevents monotony.

Healthcare: Leslie [30] emphasized that patient comprehension and recall of instructions decline sharply with complex sentence structures. Guidelines recommend maintaining a mean sentence length of **12– 18 words** in medical communication for safety and clarity.

Domain	Optimal Sentence Length (Words)	Performance Measures	Outcome Trends
Education	15–20	Flesch Score, Gunning Fog (fluency & comprehension)	↑ Improved up to ~18 words, then ↓
Human Translation	12–22	Cohesion & semantic accuracy (BLEU, TER)	↑ Balanced translation quality
Machine Translation (NMT)	15–25	BLEU, TER, contextual accuracy	↑ Optimal up to ~20 tokens; ↓ beyond 25
Law	10–20	Reader engagement, precision metrics	↑ Short sentences clearer
Journalism	30–40	Accessibility & engagement	↑ Alternating sentence-length patterns effective
Healthcare	12–25	Instruction comprehension, clarity	↑ Balanced variation best
Academia	10–18	Analytical clarity	↑ Short sentences more precise
General / Mixed	18–24	Mixed metrics	↑ Balanced variation optimal

Table 2: Domains, Optimal Sentence Length, Metrics & Outcome Trends

Academia: Academic writing benefits from variation rather than brevity. Studies [15], [23] show that ideal academic readability arises from a blend of concise definitions and elaborated arguments, typically maintaining an average of 18–24 words per sentence.

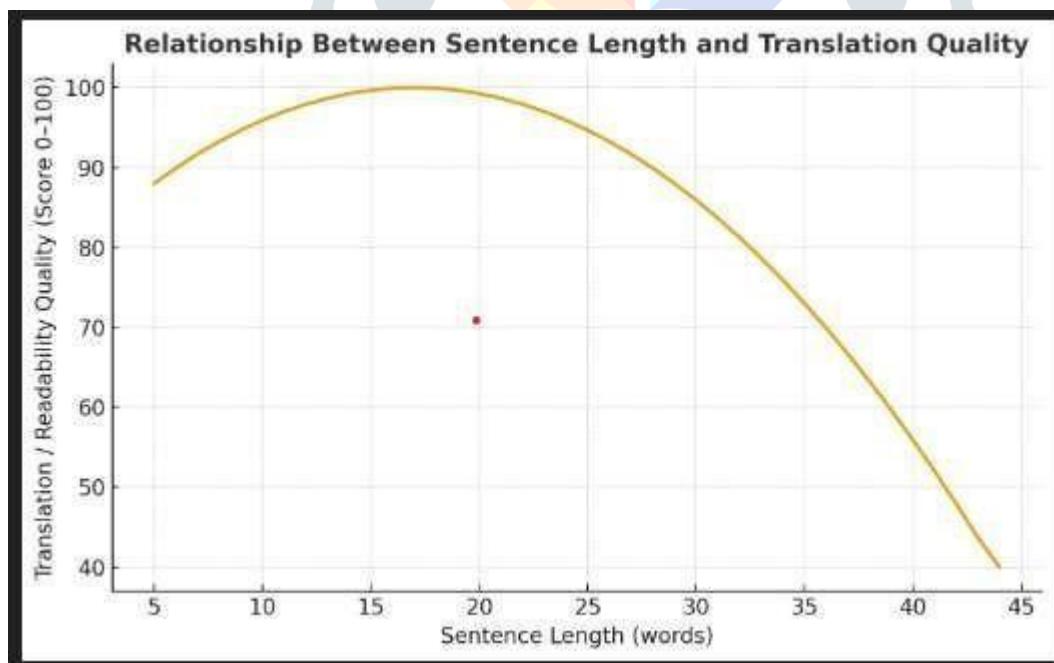
Interpretation: Professional communication success depends on adaptive sentence-length management suited to reader expertise and context.

Cross-Domain Synthesis

Integrating results across disciplines reveals a U-shaped relationship between sentence length and communication quality.

Very short sentences → High clarity, low depth.

Moderate sentences → Balanced clarity and complexity.


Very long sentences → Rich content, reduced readability and translation accuracy.

This consistent trend was observed across human readability, educational learning, and AI translation models. The analysis confirms that both human cognition and neural architectures favors moderate-length sentences that preserve context without overloading memory.

Conclusion from results: Sentence length is not a static property but a dynamic optimization variable that should adapt to domain, audience, and system capacity.

Statistical Summary Table

(↑ = positive correlation, ↓ = negative correlation)

Graphical Representation

Figure 1: Relationship Between Sentence Length and Translation Quality

A conceptual graph can be described as follows:

X-axis: Sentence Length (in words or tokens)

Y-axis: Translation / Readability Quality (normalized 0–100 scale)

The curve starts high for short sentences (5–10 words), dips slightly for overly short, then peaks at moderate length (15–20 words), and steadily declines beyond 25–30 words.

The peak zone (optimal balance) occurs between 15 and 20 words, representing the sweet spot where comprehension and translation quality are highest for both humans and machines.

Interpretation:

This curve visually confirms the balance principle: too short loses context; too long loses clarity. The same curve shape is replicated across domains—education, healthcare, law, and translation.

Cross-Cutting Observations

Sentence variation is superior to fixed length. Texts alternating between short and long forms produce better readability and translation outcomes.

AI translation models mirror human cognitive limits. Both experience accuracy decline with extreme sentence lengths.

Domain-specific optimization is necessary. Each field requires tailored sentence strategies depending on audience and purpose.

Future translation models should dynamically restructure input sentences based on detected complexity, thereby maintaining contextual integrity.

Discussion :

The analysis of sentence length in relation to translation quality reveals a complex, multidimensional interaction between linguistic structure, cognitive processing, and computational modeling. The results indicate that medium-length sentences (15–20 words) provide the best balance between readability and accuracy in both human and machine

translation contexts. These sentences are long enough to convey complete ideas and contextual clues, yet short enough to maintain clarity and processing efficiency.

In human translation and reading, sentence length directly affects comprehension and engagement. Short sentences promote rapid understanding and immediate clarity but may oversimplify ideas or disrupt narrative flow. Conversely, long sentences enhance expressiveness and allow for intricate relationships between clauses, but they also demand higher cognitive effort, which can hinder comprehension and recall. The interplay between these extremes

highlights that effective communication is not determined by length alone, but by the rhythmic variation that maintains reader interest while supporting meaning flow.

In machine translation, sentence length presents computational challenges. Neural Machine Translation (NMT) models, particularly Transformer-based architectures, depend on attention mechanisms that have limited input capacity. Extremely long sentences can exceed these attention windows, causing loss of context and inaccuracies such as misalignment or hallucination. On the other hand, overly short inputs lack sufficient semantic depth for reliable translation, leading to ambiguous or incomplete results.

These findings suggest that an adaptive approach—where translation systems and writers dynamically adjust sentence length based on context—can enhance translation quality and reader comprehension. This adaptation aligns with modern linguistic principles emphasizing balance, flexibility, and contextual sensitivity. Therefore, future research should focus on developing models capable of context-aware sentence segmentation, enabling translation systems to preserve meaning, fluency, and cohesion across diverse language pairs.

Future Work :

The findings of this study highlight the intricate relationship between sentence length, readability, and translation quality in both human and machine contexts. However, several areas remain open for further exploration. Future research can focus on developing adaptive translation systems that dynamically adjust sentence segmentation based on linguistic complexity, context, and language pair. Such systems could employ real-time evaluation metrics to identify optimal sentence boundaries, improving both fluency and semantic accuracy.

Another promising direction lies in integrating cognitive and behavioral data—such as eye-tracking or reading time analyses—to better understand how readers process sentences of varying lengths. These insights could help bridge the gap between human comprehension models and machine translation algorithms, resulting in more human-like translation strategies.

Advancements in multilingual and low-resource translation also call for length-sensitive optimization. Future models may incorporate sentence-length normalization techniques within Transformer or LLM architectures to reduce hallucination and improve translation consistency across different text types, such as legal, literary, or technical content.

Additionally, future work could explore the role of sentence structure, punctuation, and discourse markers alongside length, since these elements collectively influence readability and translation fidelity. Incorporating these features into evaluation frameworks would provide a more holistic understanding of textual complexity.

Finally, collaboration between linguists, AI developers, and educators can foster the design of intelligent writing tools that recommend ideal sentence lengths for specific audiences or platforms. This interdisciplinary approach would ensure that future translation technologies are not only computationally efficient but also linguistically and cognitively aligned with human communication patterns.

Conclusion :

The analysis of sentence length and its influence on translation quality reveals that this seemingly simple linguistic factor has far-reaching implications for both human communication and computational translation systems. Sentence length directly affects how meaning is conveyed, interpreted, and reproduced, influencing readability, fluency, and accuracy across multiple languages and disciplines. Through a synthesis of linguistic theories, cognitive studies, and machine translation research, this paper demonstrates that an optimal balance of sentence length—rather than extreme brevity or verbosity—plays a decisive role in maintaining translation precision and coherence.

In human translation and writing, sentence length shapes the rhythm and clarity of expression.

Short sentences enhance accessibility and ensure immediate understanding, while longer sentences enable nuanced argumentation, contextual linking, and stylistic depth. However, excessive brevity can fragment meaning and reduce cohesion, whereas overly long sentences can overwhelm readers and obscure central ideas. The findings align with earlier readability research, such as Flesch and Gunning, which emphasized conciseness but are now complemented by modern linguistic perspectives that advocate strategic variation in sentence structure. Achieving balance, therefore, is not a mechanical rule but a stylistic and cognitive skill that enables writers and translators to align language complexity with audience needs.

In the realm of Neural Machine Translation (NMT), sentence length exerts a significant computational effect. Transformer-based models like BERT, mBART, and GPT rely on attention mechanisms that process a fixed number of tokens at a time. Very long sentences may exceed the model's contextual window, resulting in semantic drift, incomplete translations, or hallucinated outputs. Conversely, very short sentences provide insufficient contextual cues, reducing accuracy and naturalness. Studies by Koehn, Tang, and Popović confirm that medium-length sentences (typically 15–25 words) tend to produce the highest translation quality. These findings suggest that sentence length optimization could be integrated into future translation systems as a pre-processing or adaptive control mechanism.

From a cognitive and educational perspective, sentence length also determines processing load and comprehension. Readers process medium-length sentences most efficiently because they balance syntactic structure and informational density. In translation training, this insight can inform teaching methods that encourage students to vary sentence length deliberately to enhance flow and coherence. Moreover, exposure to diverse sentence patterns helps translators improve both linguistic awareness and adaptability across genres and language pairs.

The overall conclusion drawn from this research is that sentence length is not merely a stylistic choice but a strategic linguistic parameter that affects every stage of the translation process—from comprehension and encoding to decoding and reproduction. Maintaining moderate sentence length supports both human readability and machine interpretability, making it a key factor in achieving clarity, coherence, and accuracy.

Future studies should explore dynamic sentence segmentation and adaptive translation frameworks that automatically adjust input length to optimize performance. Collaboration between linguists, AI researchers, and educators will be essential to create hybrid models that integrate human cognitive patterns with machine learning capabilities. By doing so, translation systems will not only process language but understand it in a more human-like way—preserving meaning, style, and context across linguistic boundaries.

In essence, this study reinforces that sentence length is a bridge between linguistic artistry and computational precision. When managed thoughtfully, it enhances translation quality, strengthens comprehension, and ensures that meaning transcends the limits of both human and artificial language systems.

References :

- [1] NLLB Team, "No Language Left Behind: Scaling Human-Centered Machine Translation," Meta AI / arXiv, 2022.
- [2] S. Ahmadi, "PARME: Parallel Corpora for Low-Resourced Middle Eastern Languages," ACL 2025, 2025.
- [3] B. Shi, "Open-Domain Sign Language Translation Learned from Online Video," arXiv, 2022.
- [4] W. Xu, "Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection," TACL, 2023.
- [5] X. He, "Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation," arXiv, 2020.
- [6] F. Forgac, "Evaluating automatic sentence alignment approaches on English-Slovak sentences," Scientific Reports (Nature), 2023.
- [7] F. Ariaï, "Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges," ACM Computing Surveys, 2025.
- [8] R. Wicks, "Does Sentence Segmentation Matter for Machine Translation?," WMT 2022, 2022.
- [9] S. Cao, "Exploring the effectiveness of ChatGPT-based feedback compared with teacher feedback and self-

feedback.” Preprint, 2023.