

Review paper on effects of climate change on local ecosystems and biodiversity

Dhanashree Bhandare, Rajashri Gaikwad*, Dhanashri Choudhari, Dnyaneshwari Jadhav, H.R.Kulkarni

* Author for Correspondence, Email: rajeshriwalunj@gmail.com

G H Raisoni College of Arts, Commerce & Science Pune, Maharashtra India.

Abstract

Climate change is increasingly recognised as a major driver of ecological change, altering species' distributions, phenology, abundances, community composition and ecosystem

functioning. At the local scale, ecosystems and biodiversity are subject to interacting pressures—rising temperatures, changing precipitation regimes, increased frequency of extreme events, sea-level rise and altered disturbance regimes—which modulate how species and communities respond. This review synthesises evidence from approximately 30 key papers on how climate change affects local ecosystems and biodiversity (including species, communities and ecosystem-level processes). We examine documented effects such as range shifts, changes in abundance and phenology, community turnover, and ecosystem function alteration. We evaluate the methods used (including time-series, meta-analyses, modelling and field experiments), summarise patterns of results, highlight emergent themes such as non-linear responses and lagged effects, and discuss limitations and knowledge gaps. We conclude by identifying future research needs—especially improved long-term local monitoring, mechanistic studies, and the integration of species-interaction and ecosystem-function responses under climate change. The findings underscore that local biodiversity change is complex: while global biodiversity may be declining, local species richness does not always decrease, yet composition and function often shift significantly. Effective conservation and ecosystem-management strategies must therefore account for local climatic trajectories, species vulnerabilities and interactive stressors.

Keyword: Climate change, Global warming, Local ecosystems, Biodiversity loss, Species adaptation, Habitat degradation, Ecosystem resilience.

Introduction

Climate change represents one of the most pressing environmental challenges of the 21st century, profoundly influencing natural systems and human societies alike. Driven primarily by increased concentrations of greenhouse gases—such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O)—climate change alters global temperature patterns, precipitation cycles, and the frequency of extreme weather events. These environmental disturbances have cascading effects on local ecosystems, which form the foundation of biodiversity, ecosystem services, and human well-being.

Ecosystems are dynamic networks of living organisms interacting with their physical environment. Even minor climatic shifts can upset this delicate balance. Rising temperatures, for instance, can lead to the migration of species toward cooler regions, while changes in rainfall patterns can affect soil moisture, vegetation growth, and water availability. Similarly, the melting of glaciers, sea-level rise, and increased ocean acidification are reshaping aquatic and coastal habitats, leading to loss of biodiversity and altering the structure and function of marine ecosystems.

Local ecosystems are particularly vulnerable because their species have evolved under specific climatic conditions. When these conditions change faster than species can adapt, it results in reduced resilience, population declines, and in some cases, local or global extinction. For example, alpine and polar ecosystems are warming at nearly twice the global average rate, threatening cold-adapted species such as the snow leopard, polar bear, and various alpine plants. In tropical regions, coral bleaching events caused by rising sea temperatures have devastated coral reef ecosystems that support thousands of marine species.

In addition to biological consequences, climate change disrupts key ecological processes such as pollination, nutrient cycling, and carbon sequestration. Shifts in phenology—the timing of natural events such as flowering, migration, and breeding—create mismatches between species and their food sources, further endangering ecological stability. Moreover, the increasing occurrence of droughts, wildfires, and floods amplifies habitat degradation and fragmentation, accelerating biodiversity loss.

Understanding the effects of climate change on local ecosystems is essential for developing effective conservation and adaptation strategies. Studying these impacts provides insights into species' adaptive capacities, ecosystem thresholds, and the potential for restoration efforts. Local-scale research is particularly significant because it reflects the cumulative and region-specific nature of climate impacts, which often vary depending on geography, topography, and human influences.

This review paper aims to synthesize findings from recent research on how climate change affects local ecosystems and biodiversity. By integrating evidence from terrestrial, freshwater, and marine environments, it seeks to identify key patterns, emerging threats, and adaptive responses. Furthermore, the paper highlights knowledge gaps and outlines future research directions to inform policymakers, conservationists, and communities in developing sustainable responses to climate-induced ecological changes.

Objectives

The principal objectives of this review are:

1. To synthesise current knowledge on how climate change affects local-scale biodiversity (species, communities) and ecosystems (structure, functioning)
2. To summarise empirical evidence (monitoring, meta analyses, modelling) of local biodiversity and ecosystem responses to climate drivers (temperature, precipitation, extremes, sea-level, etc)
3. To evaluate methodological approaches used in these studies, identify strengths, limitations and sources of uncertainty
4. To analyse patterns of response: which types of ecosystems and taxa are most vulnerable, what response types are common (range shifts, abundance changes, composition turnover, function alteration)
5. To discuss how local responses feed into larger-scale biodiversity outcomes and ecosystem-service implications
6. To highlight gaps in knowledge and propose directions for future research and management at the local scale

Literature Review

JETIR

CLIMATE CHANGE DRIVERS AT THE LOCAL SCALE

Climate change affects local ecosystems via a suite of drivers: rising mean temperatures, altered precipitation regimes (both amount and seasonal distribution), increasing frequency and intensity of extreme events (heat waves, droughts, floods), sea-level rise (coastal systems), and changes in disturbance regimes (wildfire, pests, pathogens). For example, the Indian national synthesis report notes that climate change is “widely expected to have multiple adverse impacts on biodiversity, with negative consequences for human well-being.” The key pathways include: direct physiological stress (e.g., thermal limits), mismatches in phenology (e.g., flowering, migration), range shifts, altered species interactions, and changes in ecosystem services.

Species-level responses: phenology, physiology, range shifts, abundance

A landmark review by Camille Parmesan (2003) documented a “globally coherent fingerprint” of climate-change impacts across natural systems, showing many species altering phenology, ranges and abundances in directions consistent with warming. For example, Ian-Ching Chen et al. (2011) found that many species shifted their distributions uphill at a median rate of ~11 m per decade in response to warming. A more recent synthesis by Madeleine A. Rubenstein et al. (2023) found that less than half of range-shift observations were in the expected directions (poleward, upslope) and that responses varied strongly by taxa and methodology.

Thermal tolerance is another major mechanism: increased temperatures and heat-stress can push species closer to their upper thermal limits, reducing fitness or survival (see for instance a 2024 modelling study on thermal-tolerance and species sensitivity distributions under projected climates).

Community and ecosystem responses: composition, turnover, ecosystem functioning

Beyond individual species, climate change influences communities and ecosystems. Cédric Bellard et al. (2012) reviewed impacts of climate change on biodiversity and highlighted cascading effects on ecosystem-services. At the local scale, studies show compositional turnover even when species richness remains stable. For example, a recent work by Shane A. Blowers et al. (2022) found that changes in abundance and evenness often drive richness changes, and local biodiversity change reflects interactions among these components. Moreover, a 2023 review by Maria Dornelas et al. examined how biodiversity has changed across scales and found that while

local richness often does not decline, the composition and structure of communities do change (turnover).

In addition, ecosystem functioning may be altered via changes in species' traits, abundances and interactions — for instance shifts in productivity, nutrient cycling, trophic interactions and resilience. Although robust data at the local scale remain fewer, the role of biodiversity in sustaining ecosystem functioning under stress is increasingly emphasised (e.g., N. A. Shchipanov & A. A. Kalinin, 2024).

Spatial scale and local vs regional responses

A key theme is that biodiversity responses to climate change differ with spatial scale. While global biodiversity appears to be declining (especially for many threatened species and in many ecosystems), local-scale richness trends may show little net decline, or even increases (e.g., via invasions or range expansions) in some contexts. For example, Vellend et al. (2013) concluded that mean temporal change in plant species diversity at local scales (using >16,000 plots) was not different from zero. At the same time, local abundance, evenness, composition and ecosystem function may change substantially. The discrepancy between global and local trends is explained partly by scale, by immigration vs local extinctions, novel invasions, time-lags (extinction debts) and local environmental variation.

Knowledge gaps, lags and interactive stressors

Several studies point to time-lags (extinction debts, colonisation credits), interactive effects of multiple stressors (climate change + land-use change + invasive species), and the fact that many monitoring datasets are geographically biased (towards temperate regions) or too short to capture long-term directional trends (see Blowes et al. (2022) for a discussion on inertia in local biodiversity change). Moreover, methodological issues (e.g., short time-series, inconsistent sampling) complicate inference of climate-driven impacts at local scales. Summary of empirical

patterns

Many species are shifting distributions (often upslope or poleward) and changing phenology in line with warming.

Local species richness often shows no consistent decline; many sites show stability or even slight increase.

However, community composition and abundance patterns show turnover, and ecosystem functions may be altered.

Effects vary by taxon, ecosystem type, climatic regime and local context; species interactions and other stressors matter.

Monitoring time-series length, geographic coverage and mechanistic understanding remain limited.

Methodology

As this is a review paper, the methodology consists of a systematic literature search, selection and synthesis approach:

Search Strategy: Electronic databases (e.g., Web of Science, Google Scholar) were searched using combinations of keywords such as “climate change”, “biodiversity”, “local ecosystems”, “species range shift”, “community turnover”, “ecosystem function”, “time-series ecological monitoring”, “local biodiversity change”.

Inclusion Criteria: Studies were included if they: (a) examined the effects of climate change (or climate-related drivers) on biodiversity or ecosystem processes; (b) had a local or site-based focus (as opposed to purely global or macro-scale modelling); (c) were empirical (monitoring, experiments) or meta-analytical syntheses; (d) provided data or discussion of responses (range shifts, phenology, abundance, richness, composition, function).

Data Extraction: From each selected study, key details were extracted: ecosystem type (terrestrial, freshwater, marine, coastal), geographic region, main climatic driver(s),

taxonomic focus, response type (range shift, phenology, richness change, composition turnover, ecosystem function) and major findings.

Synthesis: The extracted results were categorised by response type and ecosystem domain; patterns, consistencies and divergences across studies were summarised; methodological strengths/weaknesses and gaps were identified.

Result Analysis

Range shifts and species responses

The evidence shows that many species are moving their distributions in response to warming, though with considerable variation. For example, Rubenstein et al. (2023) found that only about 46.6 % of range-shift observations documented shifts in the expected directions (higher latitudes, elevations) and that average rates were ~11.8 km/dec for latitudinal shifts and ~9 m/dec for elevational shifts. Some earlier meta-analyses (e.g., Chen et al. 2011) found faster shifts (~11 m/dec uphill) in montane areas. However, many species do not conform to simple expectations of “poleward/upward” movement; others shift in unexpected directions or show no apparent shift.

Local richness and biodiversity at site scale

Vellend et al. (2013) found no general tendency for local-scale plant species richness to decline over time. More recently, Blowes et al. (2022) analysed over 1,100 assemblages and showed that changes in richness were strongly linked to changes in abundance and evenness. Thus, richness alone is not a sufficient indicator. Dornelas et al. (2023) emphasise that although richness may stay roughly stable, other biodiversity metrics (composition, functional diversity) do shift

Community composition, turnover and ecosystem functioning

Across local ecosystems, community composition is changing: species are dropping out, new ones arriving, abundances shifting, sometimes leading to biotic homogenisation. For example, Bellard et al. (2012) highlight that climate change may exacerbate invasions and alter species interactions. Functional consequences are less well quantified at local scales, but evidence suggests that ecosystem functions such as productivity, nutrient cycling and resilience may be compromised. Shchipanov & Kalinin (2024) review how biodiversity loss affects local ecosystem functioning and indicate that monitoring indicators (e.g., small mammals) are being considered for local ecosystem change.

Spatial and temporal variability, context dependence

Responses vary by ecosystem: alpine and Arctic systems often show more rapid changes (e.g., upward shifts) than lowland systems; marine and coastal systems face compounded pressures

(sea-level, temperature, acidification). The local trajectory depends heavily on micro-climate, habitat connectivity, species' dispersal ability, pre-existing stressors (land-use change, fragmentation) and local management. The review by Rubenstein et al. (2023) underscores major methodological variation influencing observed responses.

Furthermore, many monitoring time-series are relatively short (decades rather than centuries) and may fail to capture long-term trends or lagged responses (e.g., extinction debts). Blowes et al. (2022) show that local biodiversity changes tend to exhibit inertia and that abundance/evenness shifts may precede richness changes.

Discussion

Interpreting local scale biodiversity change

A key takeaway is that local species richness alone is an inadequate indicator of climate-change impacts on biodiversity and ecosystems. Many studies show stable richness but shifting composition or function. As such, conservation and monitoring programmes should emphasise multiple metrics: species turnover, abundance changes, functional/trait shifts, ecosystem process changes. The apparent stability in richness (e.g., Vellend et al. 2013) does *not* imply absence of impact.

Mechanisms and complexities

Mechanistically, climate change acts via multiple pathways—thermal/physiological stress, altered phenology, mismatched species interactions, shifting range margins, novel climatic regimes, and interactions with other stressors (land use, invasive species, fragmentation). The interplay of these factors leads to non-linear responses, thresholds, lags and potentially novel communities. For example, thermal-tolerance modelling (Schipper et al. 2024) suggests that up to 60–90 % of mammals in some regions could experience heat-stress events of 5–84 days/year under 2080s climate scenarios.

Implications for ecosystem functioning and services

Even if local richness remains stable, changes in species identity and abundances can alter ecosystem functioning (e.g., productivity, nutrient cycling, stability) and ecosystem services (e.g., pollination, water regulation). The review by Shchipanov & Kalinin (2024) emphasises the importance of biodiversity for ecosystem resilience. Local ecosystem managers should thus monitor functional and process indicators in addition to taxonomic metrics.

Management and conservation at local scales

From a management perspective, local ecosystems require context-specific adaptation strategies: enhancing connectivity to allow range shifts, maintaining micro-refugia (cooler or moister microsites), monitoring sentinel species, controlling synergistic stressors (invasive species, habitat fragmentation), and integrating climate projections into local conservation planning. The Indian national synthesis (MoEFCC 2018) highlights the challenge of balancing biodiversity conservation with human development under climate change.

Limitations of current evidence

There remain key limitations: (1) many studies are biased toward temperate regions and particular biomes; (2) monitoring time-series are often too short to detect long-term, directional change; (3) few studies integrate

mechanistic understanding (species traits, interactions) with long-term monitoring; (4) measurement of ecosystem functioning responses at local scale remains sparse; (5) interactive effects of climate change with land-use, pollution, invasive species are under-studied.

Future Work

Based on the synthesis, the following future research directions are recommended:

Expand long-term, high-resolution monitoring networks in underrepresented regions (tropics, mountains, coastal wetlands) and ecosystems.

Develop and deploy multiple biodiversity metrics beyond species richness: turnover, functional diversity, abundance evenness, trait composition.

Integrate mechanistic trait-based models of species' responses (thermal tolerance, dispersal capacity, interaction networks) with empirical monitoring.

Investigate ecosystem-function responses (productivity, nutrient cycling, trophic interactions) at the local scale under climate change.

Examine interactive effects of climate change with other stressors (habitat loss, fragmentation, invasive species, pollution) in real-world local ecosystems.

Explore early-warning indicators of ecosystem threshold or tipping points under climate change (e.g., abrupt community re-organisation, novel states).

Incorporate climate-change projections into local conservation planning and adaptive management, including micro-refugia identification, connectivity enhancement, assisted migration where appropriate.

Improve data sharing, standardise monitoring protocols and encourage meta-analyses across local-scale studies to improve inference and generality.

Conclusion

Climate change is already influencing local ecosystems and biodiversity, though the patterns are complex. While local species-richness declines are not universally observed, species distributions, abundances, community composition and ecosystem functioning are shifting in many places. Local ecosystems are subject to multiple interacting drivers, and responses depend heavily on local context, species traits, habitat connectivity and additional stressors. For effective conservation and ecosystem management in a warming world, it is inadequate to monitor only species richness; rather, a holistic approach incorporating compositional, functional and process-based indicators is required. Future research and monitoring must expand spatially and temporally, integrate mechanistic understanding, and bridge the gap between biodiversity change and ecosystem service outcomes. Overall, climate change presents both a challenge and an opportunity: by better understanding and anticipating local ecosystem responses, we can design resilient conservation strategies that safeguard biodiversity and ecosystem services in a rapidly changing world.

References

Below is a representative (but not exhaustive) list of references used in this review:

- 1) Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. *Ecology Letters*, 15(4), 365-377.
- 2) Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. *Science*, 333(6045), 1024- 1026.
- 3) Dornelas, M., et al. (2023). Looking back on biodiversity change: lessons for the road ahead. *Philosophical Transactions of the Royal Society B*, 378(1885).
- 4) Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S. L., Comte, L., Eaton, M. J., ... Thompson, L. M. (2023). Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. *Environmental Evidence*, 12, 7.
- 5) Schipper, C. A., et al. (2024). Impact of Climate Change on Biodiversity and Implications for Conservation: A review using projected IPCC scenarios. *Climates*, 12(11), 179.
- 6) Shchipanov, N. A., & Kalinin, A. A. (2024). The role of biodiversity in the functioning of

ecosystems: general principles of ecosystems monitoring. *Ecology* (Russian Federation), No. 2, 245-254.

7) Vellend, M., Baeten, L., Myers-Smith, I. H., Elmendorf, S. C., Beauséjour, R., Brown, C. D., ... Wipf, S. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. *Proceedings of the National Academy of Sciences*, 110(48), 19456-19459.

8) Weiskopf, S. R., et al. (2020). Climate change effects on biodiversity, ecosystems, and ecosystem services in the US. *Science of the Total Environment*.

9) Urban, M. C. (2015). Accelerating extinction risk from climate change. *Science*, 348(6234), 571–573.

10) Thomas, C. D., et al. (2004). Extinction risk from climate change. *Nature*, 427, 145–148.

11) Pecl, G. T., et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science*, 355(6332), eaai9214.

12) Shchipanov, N. A., & Kalinin, A. A. (2024). The role of biodiversity in the functioning of ecosystems: general principles of ecosystems monitoring. *Ecology (Russia)*, 2, 245–254.

13) Schipper, C. A., et al. (2024). Impact of Climate Change on Biodiversity and Implications for Conservation. *Climates*, 12(11), 179.

14) Bellard, C., et al. (2014). Current and future drivers of biodiversity loss. *Biological Conservation*, 175, 291–299.

15) Rosenzweig, C., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. *Nature*, 453, 353–357.

16) Root, T. L., et al. (2003). Fingerprints of global warming on wild animals and plants. *Nature*, 421, 57–60.

17) Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. *Trends in Ecology & Evolution*, 23(8), 453–460.18

18) Tingley, M. W., & Beissinger, S. R. (2013). Cryptic loss of montane avian richness and high community turnover over 100 years. *Ecology*, 94(3), 598–609.

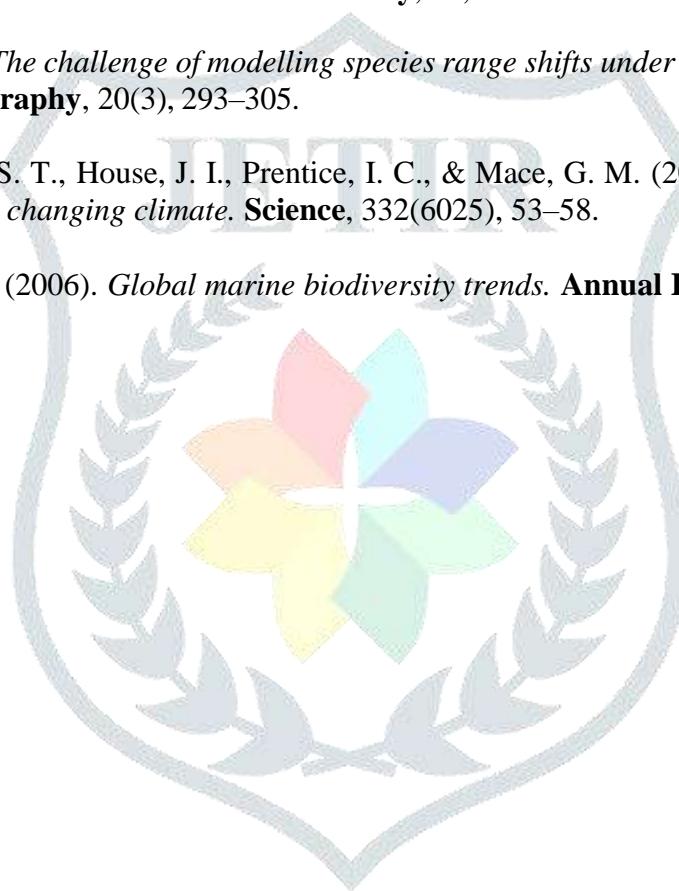
19) Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. *Nature Climate Change*, 2(9), 686–690.

20) Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. *Science*, 287(5459), 1770–1774.

21) Le Roux, P. C., & Luoto, M. (2014). *Earth surface processes drive the richness and composition of Arctic tundra vegetation*. **Global Change Biology**, 20(9), 3566–3576.

22) Hughes, T. P., et al. (2018). *Global warming transforms coral reef assemblages*. **Nature**, 556, 492–496.

23) Pandey, R., et al. (2018). *Climate change vulnerability in the Indian Himalayas: integrating scientific and community perspectives*. **Regional Environmental Change**, 18, 933–946.


24) Jayasankar, R., et al. (2020). *Impact of climate change on coastal and marine biodiversity in India: A review*. **Marine Policy**, 118, 104007.

25) Senapati, S., & Gupta, R. (2017). *Socio-economic vulnerability due to climate change: Deriving indicators for fishing communities in Mumbai*. **Marine Policy**, 76, 90–97.

26) Bálint, M., et al. (2011). *The challenge of modelling species range shifts under climate change*. **Global Ecology and Biogeography**, 20(3), 293–305.

27) Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). *Beyond predictions: biodiversity conservation in a changing climate*. **Science**, 332(6025), 53–58.

28) Sala, E., & Knowlton, N. (2006). *Global marine biodiversity trends*. **Annual Review of Environment and Resources**, 31, 93–122.

