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Abstract: 

A current system involves several executing components. Such a system usually allowsto carry out multiple tasks 

simultaneously, which can speed up the computational work of software substantially. To develop concurrent systems, 

process-oriented programming is considered naturally fit the design and implementation [1]. This kind of 

programming is founded on process algebra [2], Hoare’s Communicating Sequential Processes (CSP) [3, 4, 5] and 

Milner’s π-Calculus [6], which consider a concurrent system as a set of interacting processes with messages passing 

through chan- nels [1, 7]. It has been considered that process-oriented design and implementation could provide 

systems with known safety properties to prevent deadlock, livelock, process starvation [1]. Con- current systems 

developed by process-oriented approach are able to be efficiently distributed across multiple processors and clusters 

of machines [7]. 

 

 

Chapter 1 

 

Introduction 

 
A current system involves several executing components. Such a system usually allowsto carry out multiple tasks 

simultaneously, which can speed up the computational work of software substantially. To develop concurrent systems, 

process-oriented programming is considered naturally fit the design and implementation [1]. This kind of 

programming is founded on process algebra [2], Hoare’s Communicating Sequential Processes (CSP) [3, 4, 5] and 

Milner’s π-Calculus [6], which consider a concurrent system as a set of interacting processes with messages passing 

through chan- nels [1, 7]. It has been considered that process-oriented design and implementation could provide 

systems with known safety properties to prevent deadlock, livelock, process starvation [1]. Con- current systems 
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developed by process-oriented approach are able to be efficiently distributed across multiple processors and clusters 

of machines [7]. 

However, design and implementation are usually at different levels of abstraction in software development process 

[8]. It is challenging to incorporate knowledge and experience to manage the consistency between these phases in 

developing concurrent systems [8]. Especially, when many processes communicate simultaneously, a concurrent 

system may exhibit a large number of different behaviors. Inconsistencies arising would bring errors to the production 

of concurrent systems [9], which would prove fatal to the systems in areas with no-tolerance for failure. To deal with 

such a challenge, verification plays a crucial role in reducing, or even preventing, the introduction of errors in design 

and implementation of a concurrent system [10]. There has been much research 

in verifying consistency between design and implementation. However, most of the existing re- search [10, 11, 12, 

13] has been carried out is not targeted for concurrent systems developed in process-oriented languages. Specifically, 

we currently lack formal analysis techniques to analyze consistency of communications between design and 

implementation of concurrent systems devel- oped in process-oriented languages. 

Inspired by Hoare’s vision of category and functor as tools to formalizing relationships be- tween design, 

correctness proof, and programming languages [14], our research is built upon the research [15] which has obtained 

results that has validated the vision. As a continuation of re- search [16], The aim of this research is to provide a novel 

categorical framework to formally verify consistency of communications between process-oriented design and 

implementation of concurrent systems. 

This chapter gives an overview of the structure of the thesis. Section 1.1 gives a short introduc- tion to the aspects 

that motivated our research. Section 1.2 describes the research problems we are interested in. In section 1.3, we 

propose our research goal and objectives. Section 1.4 provides the thesis organization. 

Motivation 
 

In this section, several aspects that motivated this work and possess the potential to be researched 

upon are highlighted. 
 

Importance of Concurrent Systems 

 
In the real world, many things happen at the same time. As a software system needs to model the part of the world 

for which it is to be used, naturally concurrency fits in the software systems. It consists of simultaneously executing 

components, which provide the ability to do more than one task at a time. By performing multiple tasks concurrently, 

computational work of software could be speeded up substantially [17]. With the continuous development of hardware 

and software, concurrent systems widely apply to a range of areas. 

http://www.jetir.org/


© 2024 JETIR February 2024, Volume 11, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIRTHE2085 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e470  

Advantages of Process-Oriented Programming 
 

Process-oriented programming languages are naturally suited to the development of concurrent systems [7]. These 

kinds of programming languages usually have several concurrent processes interacting through message-passing over 

channels [1]. A process encapsulates a collection of data and methods for managing that data. Data and methods inside 

the process cannot be manipulated outside processes [1]. External processes only can pass messages through channels 

to the process for using the data and methods [1]. 

It is considered that process-oriented programming languages satisfy several requirements, such as safe 

concurrency, scalability, evolvability, and weak coupling between components [18]. A process-oriented software is 

constructed as a network of isolated concurrent processes that inter- act only using channels [7]. With mechanisms 

drawn from CSP and π-Calculus, design rules are able to provide systems with known safety properties [7] to prevent 

deadlock, livelock, process starvation [1]. Since process-oriented programs expose by their nature a high degree of 

explicit con- currency, they can be efficiently distributed across multiple processors and clusters of machines [7]. 

 

Importance of Verifying Consistency between 

Design and Implementation of Concurrent Systems 
In software development process, design and implementation are at different levels of abstrac- tion [19]. 

Incorporating knowledge and experience to manage design and implementation of con- current systems is considered 

a serious challenge [8]. Inconsistencies arising would introduce errors to the production of concurrent systems [19], 

which would be fatal to the systems in areas with zero tolerance for failure. 

As a concurrent system would exhibit different behaviors, testing concurrent systems has a limited role due to the 

difficulties of making tests to cover all the possible executions [9, 10]. To manage such challenges, verification 

techniques are necessary for proving the consistency between design and implementation of concurrent systems [11]. 

Among several verification techniques, deductive verification and model checking are widely considered and adopted 

[9, 10]. However, deductive verification requires insight as well as significant mathematical calculation, and model 

checking experiences a major obstacle called state-space explosion [9, 10]. 

The above motivated the work presented in this thesis, aimed at solving the research problem stated in the 

following section. 
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Problem Statement 
 

For concurrent systems developed by process-oriented programming languages, this research focuses on verifying 

consistency between design and implementation. We propose a category theory approach to model concurrent systems 

with the purpose of exploring answers for the following research questions: 

• RQ1. How do we model communications between processes in design of concurrent systems with category 

theory? 

• RQ2. How do we model communications between processes in implementation of concurrent 

systems with category theory? 

 
• RQ3. How can category theory be used to determine whether or not the implementation is consistent with the 

designed communications of concurrent processes? 

 

Research Goal and Objectives 
 

To solve the research problems, our goal is to build the categorical framework for process- oriented languages 

(see Fig. 1.1). This framework can be used to verify the consistency of process communications between design and 

implementation. In this framework, we propose transforma- tion between the formalisms selected to model design 

and implementation of concurrent systems into categorical models. 

To build the framework, we have the following objectives: 

 
• OBJ1: model and analyze process communications in design of concurrent systems with CSP. 

• OBJ2: implement the concurrent systems in Erasmus by refining the design.  

•  
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Figure 1.1: Research Goal and Objectives 

 
• OBJ3: abstract and analyze process communications from implementation in Erasmus. 

 
• OBJ4: define structural transformations from design to categorical models of design. 

 

• OBJ5: define structural transformations from abstraction of implementation to categorical models of 

implementation. 

 

• OBJ6: verify consistency of process communications between categorical models of design and implementation. 

 
Specifically, OBJ1 and OBJ4 aim to answer research question RQ1, OBJ2, OBJ3 and OBJ5 aim to answer research 

question RQ2, and OBJ6 aim to answer research question RQ3. 

 

 

Thesis Organization 
 

The thesis is structured as follows: Chapter 2 reviews the theoretical background of the research. Chapter 3 

presents our innovative categorical framework for verification. Chapter 4 introduces how to use the framework to 

verify process communications with traces in a running example. Chapter 5 introduces using the framework to verify 

process communications with failures in a running exam- ple with three implementation scenarios. Chapter 6 provides 

algorithms for automatically generat- ing failures of process communications, and constructing categories and 

functors for verification. Chapter 7 shows how to use data flow and category theory to verify process communications 

in the implementation against properties of process communications in Erasmus. Finally, in Chapter 8, thesis 

conclusions and possible future works are provided. 
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Chapter 2 

 

Background and Related Work 

 
This chapter introduces the theoretical background and related work of the research. Section 2.1 presents an 

overview of concurrent systems. Section 2.2 explains process-oriented languages. Sec- tion 2.3 presents 

communicating sequential processes (CSP). Section 2.4 introduces necessary in- formation of Erasmus. Section 2.5 

briefs techniques used in verification. Section 2.6 provides the basic definitions and terminologies for the Galois 

connection in abstract interpretation. Section 2.7 introduces basics of data flow analysis. In Section 2.8, category 

theory and some definitions are explained. 

 

Concurrent Systems 
 

With the increase in demand of processing multiple tasks simultaneously and the prevalence of parallel computer 

hardware, concurrency has been at the center of software engineering since its inception [7]. Usually, a concurrent 

system consists of a set of processes that can execute and communicate with each other. However, this can lead to a 

combinatorial explosion of possible execution as well as that of communications between processes [10]. 

To build a concurrent system, conventional programming languages need to make some adap- tations [18]. In 

object-oriented programming languages, one such adaptation is the use of threads to handle concurrency. 

Nevertheless, different programming styles of threads would make the soft- ware behave uncertainties [20]. Thus, 

more complexity is added to object-oriented programming languages that are already very complex [18]. 

 

 

Process-Oriented Languages 
 

Process-oriented languages are considered to be the next programming paradigm that naturally fit the development 

of concurrent systems [1, 7]. Many process-oriented programming languages are based on process algebra CSP and 

π-Calculus. Process-oriented programming is based on pro- cesses that communicate by passing messages through 

channels rather than objects invoking one another’s methods in object-oriented programming [7, 18]. It is considered 
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that process-oriented languages satisfy several requirements, such as safe concurrency, scalability, evolvability, 

modeling capabilities and modularity, and weak coupling between components [21]. 

To support process-oriented programming, several languages and libraries are designed, such as Erasmus [22], 

occam-π [23] and JCSP [24]. Though JCSP provides processes and channels for computation and passing messages, 

it is still a library added to object-oriented programming language Java. Occam-π programs are constructed as process 

networks with processes as nodes and channels as edges for passing messages. A channel is typed to specify the kinds 

of messages that can be passed through itself, while a protocol is defined to specify a sequence of messages that can 

be passed through a channel. Besides, in occam-π, a lower-level process network can be abstracted as a node in a 

higher-level process network, which conforms to the software engineering principle: separation of concerns. 

Compared with occam-π, Erasmus has similar features. In Erasmus, a port that is of the type of a protocol works as 

an interface of a process to connect to a channel. A process can have several ports. Each port of a process specifies 

the types and the sequences of messages that the port receives or sends through a channel. With the notion of port, it 

helps to specify and analyze passing messages between processes and channels. Moreover, some features of Erasmus 

can be modified and adapted based on the needs of our research when doing the categorical analysis. In this research, 

Erasmus is chosen to implement concurrent systems. 

Communicating Sequential Processes 

(CSP) 

 
CSP was first proposed by Hoare as a language in 1978 [3], then was refined toward specification- oriented with 

its process algebraic form in 1985 [4], and has evolved later by Roscoe around 2010 [5]. It has been widely used to 

specify, design and implement concurrent systems. CSP specifies and models processes in a concurrent system that 

communicate with their external environment. The construction of a process depends on a set of all events that occur 

on the process. This set of all events is called an alphabet. A process in CSP can be described by a set of traces. Each 

trace is a sequence of events. Trace can be extended to failure and divergence in order to describe safety and liveness 

of the process. In CSP, a process is defined as (alphabet, failures, divergences) [4, 5], which will be explained in 

Chapter 3. If a process is assumed not to become chaos, (alphabet, failures) is enough to describe safety and liveness 

of the process [1]. Processes can be assembled together as a system, where they can interact with each other and with 

their external environment. Such interac- tions are called communications, which are synchronized. If one process 

needs to communicate to another process, a channel is required between them to receive the input of messages and 

pass the output of them at the same time. Also, several operators are defined to describe the relationships between 

processes. Given two processes P and Q, CSP can calculate sequence P ; Q, deterministic choice P Q Q, non-

deterministic choice P H Q, parallel execution P ǁ Q, and iteration, using the recursion operator µP : A · F (P ). 
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Erasmus 
 

Erasmus is one of process-oriented programming languages, which is based on the idea of CSP but with some 

differences [18, 21, 22, 25]. An Erasmus program consists of cells, processes, ports, protocols and channels . A cell, 

containing a collection of one or more processes or cells, provides the structuring mechanism for an Erasmus program. 

A process is a self-contained entity which performs computations, and communicates with other processes through 

its ports. A port, which is of a type of protocol, usually serves as an interface of a process for sending and receiving 

messages. A protocol specifies the type and the orderings of messages that can be sent and received by ports of the 

type of this protocol. A channel, which is of a type of protocol, must be built between two ports for two processes to 

communicate. Erasmus also offers operations for deterministic choices and nondeterministic choices by using 

keywords select and case respectively. 

In Erasmus, communication is as important as method invocation in object-oriented languages. 

The requirements of communications between two processes p1 and p2 are: 

 
• p1 must have a port, π1, which is of protocol t1, 

 
• p2 must have a port, π2, which is of protocol t2, 

 
• Each protocol may contain several different types of requests, which specifies the types of requests the port can 

send or receive, 

• There exists a channel, x, which is defined with either protocol t1 or t2.   A channel has two ends, one is channel 

in for receiving incoming requests and the other is channel out for sending outgoing requests, 

• The ProcessesCommunication property: Requests are sent by a process through its client port (declared with ‘− 

’), then received at channel in of a channel and sent out by channel out of the channel, finally received by the 

other process at the server port (declared with ‘+’). 

• The Protocols property: Given a client port π1 of protocol t1 and a server port π2 of protocol t2, if π1 and π2 can 

communicate, t2 must satisfy t1. Here, t2 satisfies t1 is defined as that the set of types of requests of t1 must be a 

subset of the set of types of requests of t2. 

Some research is proposed to study communications in Erasmus, which includes constructing a fair protocol that 

allows arbitrary, nondeterministic communication between processes [26], describ- ing an alternative construct that 

allows a process to nondeterministically choose between possible communications on several channels [27], and 

building a static analyzer to detect communication errors between processes [28]. In this thesis, we are exploring an 

approach to verify consistency of communications between design and implementation of concurrent systems 

developed by Erasmus. 
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Verification Techniques 

 
Verification techniques check whether a system conforms to its expected properties [10]. Several techniques of 

verification have been proposed over the years [9]. Usually, these techniques are categorized as follows [12]: theorem 

proving, model checking, and static analysis. 

Theorem Proving is based on the deductive logic proposed by Floyd and Hoare [29, 30]. In this technique, a 

specification notation with formal semantics, along with a deductive apparatus for reasoning, are used for analysis of 

the program [16]. However, theorem proving requires signifi- cant mathematical calculations to analyze programs, 

and the process of analyzing is difficult to be automated. 

Model checking is for determining if a model of a system satisfies a correctness property [9]. A model of a program 

consists of states and transitions, and a property is a logical formula [9]. Model checking explores all the possible 

states and transition of the system. If the property does not hold, the model checking algorithm generates a 

counterexample, an execution trace leading to a state in which the property is violated [13]. As the state space of 

software programs is typically too large to be analyzed completely, a major obstacle for model checking is the state 

space explosion problem [9, 10]. 

In static analysis the programs are analysed to produce useful information without executing them [31]. Static 

analysis has been used to detect errors which might lead to premature termina- tion or ill-defined results of the program 

[32]. In classical static analysis four main approaches to program analysis are introduced [33]: data flow analysis, 

constraint based analysis, type and effect systems, and abstract interpretation. One of the important ideas behind 

static analysis is abstrac- tion, which transforms a program, called concrete program, into a simpler program, called 

abstract program, with some key properties of the concrete program [34]. In this research, static analysis is used to 

extract process communications from implementation. 

 

Galois Connection in Abstract 

Interpretation 

Abstract interpretation is a method for gathering information about the behavior of the program from abstract 

semantics of the program instead of concrete semantics of the program [35]. It uses Galois connections to build 

relationships between concrete and abstract semantics with providing sound answers to questions about the behaviors 

of the programs [36]. Specifically, Galois connection is a relation between two partially ordered sets in order theory 

[35]. Given ⟨C, ±⟩ and ⟨A, “⟩ are two partially ordered sets, and two monotone functions α : C →   A and γ : A →    C. 

Then (α; γ) is a Galois connection of C and A if and only if for all x ∈ C and y ∈ A, α(x) ± y ≡ x “ γ(y). 
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Using Galois connection in abstract interpretation, the concurrent systems could be simplified as abstract models 

while retaining some of the properties of the systems [16]. For concurrent systems developed by Erasmus, Galois 

connection is exploited to build abstract semantics of systems in terms of event order vector [16, 28]. Moreover, the 

concept of a Galois connection is captured in category theory [37]. In our research, we make use of Galois connection 

to construct abstract semantics based on processes and communications of concurrent systems. 

Data Flow Analysis 

Given a program, it is often desirable to know the relationships between the use of values and the definition of 

values. Such relationships refer to the define/use relationships [38]. Data flow analysis is a static analysis technique 

that focuses on the information about the possible values of variables at each program point [16]. With the concept of 

data flow analysis, a program is allowed to be represented by data flow graphs consisting of a set of nodes and a set 

of edges between nodes [39]. Data flow analysis was first introduced by Kildall [40], and later was formalized by 

Clarke to analyze the define/use relationships [41]. In the define/use data flow technique, a program and a set of 

variables are analyzed according to the flow of value from the point where it is defined to the point where it is used. 

For analyzing concurrent systems, a considerable amount of literature has been published on da- ta flow analysis. 

These include verifying the properties of systems [42], computing a set of potential static deadlock cycles for Ada 

tasking programs [43], using the rendezvous model of synchroniza- tion [44], studying the causal dependencies of 

events [45], detecting data races [46], and unifying data flow models [47]. In this research, data flow is used to analyze 

process communications in implementation. 

Category Theory 

 
Due to its abstractness and generality, category theory has led to its use as a conceptual frame- work in many areas 

of computer science [48] and software engineering [49]. It is suggested that category theory can be helpful towards 

discovering and verifying connections in different areas, while preserving structures in those areas [50]. In software 

engineering, category theory is pro- posed as an approach to formalizing refinement from design to implementation 

that are at different level of abstraction [14, 49]. Specifically, for modeling concurrency, category theory is used to 

model, analyze, and compare Transition System, Trace Language, Event Structure, Petri Nets, and other classical 

models of concurrency [51, 52, 53]. Besides, category theory is applied to study relationships between geometrical 

models for concurrency and classical models [54]. Furthermore, a categorical framework RASF has been built to 

formally model and verify specification, design and implementation of Reactive Autonomic System (RAS) [15]. 

However, to the best of our knowledge, there is no such kind of categorical framework for verifying the 

consistency between process-oriented design and implementation. The aim of this re- search is to work on the 
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categorical framework. To understand the research, some of the categorical definitions and propositions are listed 

below: 

Definition 2.8.1. Category: A category consists of the following components: 

 
• Objects: A, B, C, etc. 

 
• Morphisms: f, g, h, etc. 

 
• Identity: For each object A there is a morphism IdA: A → A, called the identity of A. 

 
• Domain and Codomain: For each morphism f there are given objects: dom(f ), cod(f ) called 

the domain and codomain of f . We write: f: A →  B to indicate that A = dom(f) and B = cod(f). 

 
• Composition: Given morphisms f: A →    B and g: B →    C, i.e. with: cod(f) = dom(g), there is a given morphism: 

g ◦ f: A → C, called the composite of f and g. These components are required to satisfy the following laws: 

• Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f, for all f : A → B, g : B → C, h : C →   D. 

• Unit: f ◦ IdA = f = IdB ◦ f, for all f: A → B. 

 
Definition 2.8.2. Functor: A functor F: C → D between categories C and D is a mapping of objectsto objects along with 

morphisms to morphisms in the way of: 

• F(f: A → B) = F(f) : F(A) → F(B). 

 
• F(g ◦ f) = F(g) ◦ F(f); 3) 

 
• F(1A) = 1F(A). 

 
Definition 2.8.3. Subcategory: A category C is a subcategory of a category D if: 

 
• Every object of C is also an object of D. 

 
• Every morphism of C is also a morphism of D. 

 
• Composition and identities of C coincide with those of D. 

 
Proposition 1. Poset Category: Let (S; “) be a poset (partially-ordered set), which satisfies reflex- 

ivity, transitivity, and antisymmetry. In the poset category, each member x of S is an object; and each relation x “ y of 

(S; “) is a morphism x → y. 

Proof. 

 
• Object: Each member x of S is an object of the poset category. 

 
• Morphism: Each relation x “ y of (S; “) is a morphism x → y. 

• Identity: For every object x, there is an identity morphism x “ x, corresponding to reflexivity 
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in the poset. 

 
• Composition: The morphisms (x “ y) and (y “ z) form a composition, (y “ z) ◦ (x “ y) = 

(x “ z), corresponding to transitivity in the poset. 

• Associative: ((x “ y) ◦ (v “ x)) ◦ (u “ v) = (v  “ y) ◦ (u “ v) = u “ y and 

(x “ y) ◦ ((v “ x) ◦ (u “ v)) = (x “ y) ◦ (u “ x) = (u “ y).   

Summary 

 
In this chapter, necessary background and related work for our research are introduced. Specif- ically, this chapter 

presents an overview of concurrent systems, explains the process-oriented lan- guages, and introduces communicating 

sequential processes (CSP) and Erasmus. Besides, this chap- ter give a brief introduction to verification techniques, 

Galois connection in abstract interpretation, data flow analysis, and some definitions in category theory. 

In the next chapter, we propose an innovative categorical framework for verifying consistency of process 

communications between design and implementation. 

 

Chapter 3 

The Categorical Framework 

Introduction 

 
This chapter introduces the innovative categorical framework for verifying consistency of com- munications 

between processes. Section 3.2 briefs the contributions in developing the categorical framework. Section 3.3 illustrates 

the categorical framework and gives an overview of the workflow of the the framework. Section 3.4 illustrates how 

to design concurrent systems in CSP. Section 3.5 introduces basics of Erasmus and gives an example implemented in 

Erasmus. Section 3.6 describes rules for abstracting communications out of implementation, and rules for analyzing 

traces and failures from the abstraction. Section 3.7 explains how to construct categories based on the com- 

munications in the design and implementation. Section 3.8 shows approaches to construct functors between categories 

for verification. Section 3.9 summarizes this chapter. 
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Contributions 

 
Several contributions in developing the categorical framework are introduced as follows: 

 
• The framework for verifying process communications is proposed.  

 
• Rules for abstracting implementation in Erasmus are proposed. 

 
• Rules for analyzing traces and failures from abstraction of implementation in Erasmus are 

proposed. 

 
• Category theory is used to model process communications in design and implementation. 

 
• Functors are used to verify consistency of process communications between design and im- 

plementation. 

 

 

The Framework 

 
The proposed categorical framework for verification consists of the following steps (See Fig. 3.1). 

  

 

 
Figure 3.1: The Categorical Framework 

 

Step 1. Design Concurrent Systems in CSP: In this step, we need to design concurrent systems in CSP, and then 

analyze failures of processes together with communications. This step is to achieve research objective OBJ1. 

Step 2. Implement the Systems in Erasmus: In this step, we need to implement the concurrent systems in Erasmus 
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by refining the design in step 1. This step is to achieve research objective OBJ2. 

Step 3. Abstract Communications from Implementation and Analyze Communications: In this step, we need to 

abstract processes and communications out of the implementation in step 2, and then analyze abstract processes as 

well as communications. This step is to achieve research objective OBJ3. 

Step 4. Build Categorical Models from Design: In this step, we need to construct categorical models for the design 

in step 1 with preserving structures of communications. This step is to achieve research objective OBJ4. 

Step 5. Build Categorical Models from Abstraction of Implementation: In this step, we need to construct 

categorical models for the abstraction of implementation in step 3 with preserving structures of communications. This 

step is to achieve research objective OBJ5. 

Step 6. Construct Functors from Categories of Design to Categories of Abstraction of Imple- mentation: In this 

step, we need to construct functors to verify the categorical models of the design in step 4 and the categorical model 

of abstraction of implementation in step 5. This step is to achieve research objective OBJ6 . 

To understand the framework, the workflow of the framework is described in the following sections. 

 

Illustration of Step 1: Design Concurrent 

Systems in CSP 
 

In this research, according to CSP, a process can be represented as (alphabet, traces) and (alpha- bet, failures), 

where traces can represent the liveness of the process and failures can represent both liveness and safety of the process 

[1]. The aim of this step is to use traces and failures to design and analyze processes and communications in the 

concurrent system. 

Traces 

 

A trace of the behaviour of a process is a finite sequence of symbols recording the events in which the process 

has engaged up to some moment in time [4]. Imagine there is an observer with a notebook who watches the process 

and writes down the name of each event as it occurs [4]. A trace will be denoted as a sequence of symbols, separated 

by commas and enclosed in angle brackets 

• ⟨e1, e2⟩ consists of two events, e1 followed by e2. 

 
• ⟨e⟩ is a sequence containing only the event e. 

 
• ⟨⟩ is the empty sequence containing no events. 
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Given two processes P and Q with alphabet A, several rules are used to derive the denotational semantics of traces 

of the processes [4, 5]. 

 
(1)traces(c → P ) = {⟨⟩} ∪   {⟨c⟩

-t | t ∈ traces(P )} (2)traces(P ; Q) = traces(P ) ∪   {s-

t | s-
⟨C⟩ ∈ P, t ∈ traces(Q)} (3)traces(P  Q Q) = traces(P ) ∪ traces(Q) 

(4) traces(P H Q) = traces(P ) ∪ traces(Q) (5)traces(P ǁ Q) = 

traces(P ) ∩ traces(Q) 

 

In the above mentioned rules, the symbol - concatenate two traces, and the symbol C means the process with the trace 

ends successfully; (1) means that the first event in the trace is c, and followed 

by the events in traces of P ; (2) denotes that the traces of P ; Q come from trace of P first. When P ends successfully 

and Q starts to execute, the traces of P ; Q will add the traces of Q; (3) and (4) represent that the traces of P Q Q and 

the traces of P H Q come from traces of P or traces of Q; 

(5) describes that the traces of P ǁ Q come from the traces that in both traces of P and traces of Q. 

 

Refusals and Failures 

 
In order to distinguish between (P Q Q) and (P H Q), refusals and failures are introduced to 

describe processes [4, 5]. 

 
 

Refusals 

 
let X be a set of events which are offered initially by the environment of a process P . If it is possible for P to 

deadlock on its first step when placed in this environment, we say that X is a refusal of P . The set of all such refusals 

of P is denoted by refusals(P ) [4]. 

Given two processes P and Q with alphabet A, several rules are used to derive the denotation semantics of refusals 

of the processes [4, 5]. 

 
(1) refusals(c → P ) = {X | X ⊆ (A − {c})} 

 

(2) refusals(P ; Q) = {X  | (X ∪   {C}) ∈ refusals(P )} ∪   {X  | ⟨C⟩ ∈ traces(P )} ∧   X  ∈ refusals(Q)} 

(3) refusals(P Q Q) = refusals(P ) ∩ refusals(Q) (4)refusals(P H Q) 

= refusals(P ) ∪ refusals(Q) 

(5) refusals(P ǁ Q) = {X ∪ Y | X ∈ refusals(P ) ∧  Y ∈ refusals(Q) 
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In the above mentioned rules, (1) means that if the first event is not c, c → P would deadlock; (2) indicates that the 

refusals of P ; Q are from the refusals of P first. When P ends successfully, the refusals of P ; Q are from refusals of 

Q; (3) describes that the refusals of P Q Q are from the refusals 

that would deadlock both process P and process Q; (4) represents that the refusals of P H Q are 

from the refusals of P or the refusals of Q, because the refusals of P and the refusals of Q can deadlock P H Q due to 

the nondeterminism; (5) denotes that the refusals of P ǁ Q are from any set X that makes P deadlock and any set Y that 

makes Q deadlock. 

 

Failures 

 
Failures of a process is defined as a relation (set of pairs) 

 
failures(P ) = {(s, X) | s ∈ traces(P ) ∧   X ∈ refusals(P/s)} 

 
If (s, X) is a failure of P , this means that P can engage in the sequence of events recorded by s, and then refuse to do 

anything more, in spite of the fact that its environment is prepared to engage in any of the events of X [4, 5]. In CSP, 

the failures of a process usually are more informative about the behavior of that process than its traces or refusals, 

which can both be defined in failures as follows [4, 5]. 

traces(P ) = {s | ∃X · (s, X) ∈ failures(P )} 

refusals(P ) = {X  | (⟨⟩, X) ∈ failures(P )} 

Given two processes P and Q with alphabet A, several rules are used to derive the denotation semantics of failures 

of the processes [4, 5]. 

 
(1)failures(c → P ) ={(⟨⟩, X)|c ∈/ X} ∪   {(⟨c⟩

-s, X) | (s, X) ∈ failures(P )} 

(2) failures(P ; Q) ={(s, X)|s ∈ A∗  
∧   (s, X ∪   {C}) ∈ failures(P )} 

∪   {(s-t, X) | s-
⟨C⟩ ∈ (traces)(P ) ∧   (t, X) ∈ failures(Q)} 

(3) failures(P  Q Q) ={(⟨s⟩, X) | (⟨⟩, X) ∈ failures(P ) ∩   failures(Q) 

∨ (s /= ⟨⟩ ∧  (s, X) ∈ failures(P ) ∪  failures(Q))} 
 

(4) failures(P H Q) =failures(P ) ∪   failures(Q) 
 

(5) failures(P ǁ Q) ={(s, X ∪ Y ) | s ∈ A∗ 
∧  (s, X) ∈ failures(P ) ∧  (s, Y ) ∈ failures(Q)} 

 
 

In the above mentioned rules, (1) means that the failures of c →   P calculate the failures when event c occurs first, and 

then calculate the failures of P after c; (2) indicates that the failures of P ; Q calculate the failures when process P 

occurs first. When P ends successfully, the failures of P ; Q depend on the failures of Q; (3) describes that when no 

event occurs, failures of P Q Q is the intersection of the failures of P and the failures of Q. Once the first event 

occurred, the failures 
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P Q Q depend on either the failures of P or the failures of Q; (4) represents that the failures of 

P H Q depends on the union of the failures of P and the failures of Q due to the nondeterminism; 

(5) denotes that the refusals in the failure of P and the refusals in the failure of Q together constitute the refusals in 

the failure of P ǁ Q. 

 

Illustration of Step 2: Implement the 

Systems in Erasmus 

 
In this research, Erasmus is chosen to implement concurrent systems. Erasmus is one of process- oriented 

programming languages. The aim of this step is to implement processes and communica- tions in Erasmus based on 

the design in CSP. 

Erasmus 

 

An Erasmus program consists of cells, processes, ports, protocols and channels. A system consists of a set of cells 

linked by channels. A cell, containing a collection of one or more processes or cells, provides the structuring 

mechanism for an Erasmus program. A process is a self-contained entity which performs computations, and 

communicates with other processes through its ports. A port, which is of a type of protocol, usually serves as an 

interface of a process for sending and receiving messages. A protocol specifies the type and the orderings of messages 

that can be sent and received by ports of the type of this protocol. A channel, which is of a type of protocol, must be 

built between two ports for two processes to communicate. 

 

Processes and Ports 

 
In Erasmus, processes communicate with each other through ports. Ports come in two kinds: servers and clients. 

Usually, a query is a message sent by a client to a server; a reply is a message sent from a server to a client. If P is a 

process, then srv(P ) is its set of server ports and cli(P ) is its set of client ports. Detailed definition of process and 

port are provided in research [22]. 
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Messages 

 
A message may contain data or it may be just a signal. The set of message a port can send and receive is called 

the alphabet of the port. A process may have several ports, and the alphabet of the process consists of all the messages 

of all its ports can send and receive. Detailed definition of message is provided in research [22]. 

 

Channel 

 
A channel connects two ports belonging to different processes. A typical channel is a pair χ = (P.a, Q.b), where a 

is a port of process P and b is a port of process Q. The channel χ must have the following properties: (1). The processes 

P and Q must be distinct. (2). One port must be a client and the other must be a server. (3). A port must be connected 

to exactly one channel. Detailed definition of channel is provided in research [22]. 

Cells 

 
A cell is a subsystem consisting of processes, ports, and channels. A process may be linked by channels to other 

processes within the cell or to ports of the cell. Cells allow us to reason about a system by separating the concerns of 

what happens inside a cell and what happens outside a cell. Detailed definition of cell is provided in research [22]. 

 

Protocols 

 

A protocol determines the types and temporal sequence of values that can be communicated by a port or 

transmitted by a channel. Protocols are expressed as regular expressions with a few additions. For example, the 

protocol Start; (query ↑ reply)*; Stop means that the first message must be Start, then there are indefinite number of 

pairs of messages query and reply, and finally ends with the message Stop. Detailed definition of protocol is provided 

in research [22]. 
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The Hello World Example 

 
To illustrate the implementation in Erasmus, a Hello World example is given. The detailed syntax of Erasmus is 

provided in research [22]. In the following code, the message “HelloWorld” is sent from process person via client 

port r1 of protocol t1, forwarded through channel c of protocol t1, and received by process world via server port r2 

of protocol t2. Protocol t1 is satisfied by protocol t2, as {request1: Word} is a subset of {request1: Word | request2 : 

Word}. 

t1= protocol {request1:Word} 

t2= protocol {request1:Word | request2:Word } 

 

 
person= process r1:-t1{ 

r1.request1="HelloWorld"; //sending the message to process world 

} 

 

 
world= process r2:+t2{ 

message:Word=r2.request1; //receiving the message from process person 

} 

sample= cell{ 

// using channel c to connect port r1 on person to port r2 on world c: Channel t1;person(c);world(c); 

} 

 

 

Illustration of Step 3: Abstract 

Communications from Implemen- tation 

and Analyze Communications 

In this research, we are interested only in communications between processes. It is fundamen- tal that the code 

that is not related to the communications be ruled out, and the code relevant to the communications be retained. As 

Erasmus is based on CSP, in this research we decide to use traces and failures to analyze the semantics of Erasmus 

programs. The aim of this step is to use Galois connection to abstract processes and communications from the 

implementation, and analyze processes and communications with traces and failures in Erasmus. 
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Abstraction Rules 

 
Implementation is considered as concrete domain, and abstraction of implementation is deemed as abstract 

domain. There are partial-order relationships, “execute before or simultaneously”, be- 

tween statements in concrete domain and between statements in abstract domain respectively. There are two partial-

order sets ⟨ConcreteStatements, ±⟩  and ⟨AbstractStatements, “⟩, where ±  and “ represent the “execute before or 

simultaneously” relationship between statements in concrete do- 

main and abstract domain respectively. 

According to Galois Connection, relationships between statements in abstract domain must be able to be mapped 

to corresponding relationships between statements in concrete domain, and vice versa. Thus, there are two monotone 

mappings, namely α : ConcreteStatements → AbstractSt- atements, and γ : AbstractStatements → ConcreteStatements. 

α and γ mappings involve communication-related statements only. There are (1). for any x, y ∈ ConcreteStatements, 

if x ± y, 

then α(x) “ α(y); (2). for any a, b ∈ AbstractStatements, if a “ b, then γ(a) ±  γ(b), and; (3). for all 

x ∈ ConcreteStatements and b ∈ AbstractStatements, α(x) “ b ≡ a ± γ(b). 

The details of mapping rules for α and γ are specified in Table 3.1 and Table 3.2 respectively. 
 

Concrete Statements Abstract Statements 

C C 

C1; C2 C1; C2 

select {| a1 | C1 . . . | an | Cn } select {a1; C1 | . . . | an; Cn} 

case {|| C1 . . . || Cn } case {C1 | . . . | Cn} 

loop {C} loop {C} 

Table 3.1: Mapping Rules for α 

 
 

Abstract Statements Concrete Statements 

C C 

C1; C2 C1; C2 

select {C1 | . . . | Cn} select {ǁ C1 ǁ . . . ǁ Cn } 

case {C1 | . . . | Cn} case {ǁ C1 ǁ . . . ǁ Cn } 

loop {C} loop {C} 

Table 3.2: Mapping Rules for γ 

 
In Table 3.1 and Table 3.2, C represents statements related to communications; C1; C2 means C1 executes before 

C2; | ai | Ci (1 ≤  i ≤  n) in select indicates that if condition ai is true, then Ci will execute (sometimes, condition ai is not 

necessarily provided. If Ci is satisfied in the choice, it will be executed); || is the delimiter between choices in select 

or case in concrete statements, while | is the delimiter between choices in select or case in abstract statements. 
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Analyzing Semantics of Erasmus Code 

 
Traces and failures can be used to analyze semantics of Erasmus code. 

 
 

Traces 

 
To generate and analyze traces of processes from Erasmus implementation, several rules are defined as follows: 

 
(1)traces(pt.m) = {⟨⟩, ⟨pt.m⟩} 

 

(2)traces(pt.m1 ; pt.m2 ) = {⟨⟩, ⟨pt.m1 ⟩, ⟨pt.m1 , pt.m2 ⟩} 

(3)traces(loop{pt.m}) = {⟨⟩} ∪   {⟨pt .m⟩
-t  | t  ∈ traces(loop{pt.m})} 

(4) traces(case{pt.m1 | · · · | pt.mn }) = traces(pt.m1 ) ∪ · · · ∪  traces(pt.mn ) 
 

(5) traces(select{pt.m1 | · · · | pt.mn }) = traces(pt.m1 ) ∪ · · · ∪  traces(pt.mn ) 

 

In the above mentioned rules, (1) means if the process sends/receives only a message m through port  pt,  the  traces  

of  events  of  this  process  would  be  empty  ⟨⟩  and  ⟨pt.m⟩;  (2)  means  if  the  pro- cess sends/receives first message 

m1 through port pt, then sends/receives the second message m2 through  port  pt,  the  traces  of  events  are  {⟨⟩, ⟨pt.m1 

⟩, ⟨pt.m1 , pt.m2 ⟩};  (3)  means  if  the  process consists of an indefinite loop of sending/receiving a message m through 

port pt, the traces of events would contain traces of indefinite recursion of pt.m; and (4) and (5) represent that 

deterministic and nondeterministic choices, respectively, can be modeled using the same approach as a selection 

among traces of events. 

Failures 

 
To generate and analyze failures of processes from Erasmus implementation, several rules are defined as follows: 

 
(1)failures(p.m) ={(⟨⟩, X)|X  ⊆ (alphabet(p) −  m)} 

(2)failures(C1; C2) ={(s, X) | (s, X) ∈ failures(C1)} 

∪   {(s-t, X) | s-
⟨C⟩ ∈ traces(C1) ∧   (t, X) ∈ failures(C2)} 

(3)failures(loop{C}) ={(s, X) | (s, X) ∈ failures(C)} 
 

∪   {(s1-s, X) | s1-
⟨C⟩ ∈ traces(C) ∧   (s, X) ∈ failures(C)} 

∪   . . . ∪   {(s1-s2- . . . -sn−1-sn, X)|si-
⟨C⟩ ∈ traces(C) 

∧ 1 ≤ i ≤  n −  1 ∧ (s, X) ∈ (failures(C))} (4)failures(case{C1|. . . 

http://www.jetir.org/


© 2024 JETIR February 2024, Volume 11, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIRTHE2085 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e489  

|Cn}) ={(s, X)|(s, X) ∈ failures(C1) ∪   . . . ∪   failures(Cn)} 

(5) failures(select{C1|. . . |Cn}) ={(s, X)|(s = ⟨⟩ ∧   (s, X) ∈ failures(C1) ∩   . . . ∩   failures(Cn)) 

∨ (s /= ⟨⟩ ∧  (s, X) ∈ failures(C1) ∪  . . . ∪  failures(Cn))} 

(6) failures(C1 ǁ C2) ={(s, X ∪   Y )|((s, X) ∈ failures(C1) ∧   (s, Y ) ∈ failures(C2))} 

In (1), the message can be represented by p.m. p.m is a simple statement. failures(p.m) means any event occurs on 

port p other than message m, p stops working. In (2), let C1 and C2 be two state- ments , and let C1 execute before C2. 

failures(C1; C2) means that the failures become failures(C1) first. After C1 accomplishing its execution successfully, 

the failures depend on failures(C2). In (3), let C be a statement iterating n times in a loop, and let Ci represent the ith 

iteration of a loop of 

C. failures(loop{C}) means that if C iterates once, the failures become failures(C); if C iterates twice, and if the 

execution of the first iteration is accomplished successfully with trace s1, the fail- ures depend on failures(C) in the 

second iteration; if C iterates n times, and if the execution from 1st iteration to (n − 1)th iteration successfully with 

trace s1-s2- . . . -sn−1, the failures depend on 

failures(C) in the nth iteration. In (4), let Ci be a statement where 1 ≤ i ≤ n, and let case represent 

nondeterministic choices. failures(case{C1 | . . . | Cn}) means that the failures depend on one of failures(Ci) where 1 

≤ i ≤ n. In (5), let Ci be a statement where 1 ≤ i ≤ n, and let select repre- sent deterministic choices. failures(select{C1 | 

. . . | Cn}) means that if statements C1 . . . Cn wait for the occurrence of the first message, the failures become 

failures(C1) ∩ . . . ∩ failures(Cn). Whenthe trace s occurs, it indicates Ci executes, so the failures are in failures(C1) ∪ . 

. . ∪ failures(Cn). In (6), let C1 be a statement from a process, let C2 be a statement from another process, and let C1 

and C2 be able to communicate with each other. In Erasmus, two ports can communicate only when the same message 

is sent by a port and received by another port simultaneously. If there is a failure of C1 ǁ C2, the failure would be from 

failures(C1) and failures(C2). 

 

Illustration of Step 4 and Step 5: Build 

Categorical Models from Design and 

Abstraction of Implementation 

In this research, category theory is used to model communications and processes in the design and the abstraction 

of implementation. The aim of these two steps is to construct categories for modeling communications in the design 

and the abstraction of implementation. 

To construct categorical models of traces and failures of processes and communications, several 

definitions are provided as follows. 
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Proposition 2. Category of Traces: Each object is a set of traces to indicate a process. A mor- phism traces(A) → 

traces(B) means traces of process A evolves to traces of process B, where traces(A) ⊆ traces(B). 

Proof. 

Objects: Each object is a set of traces of events. Such as {⟨⟩, ⟨sq⟩, ⟨sq, tq⟩, . . . }. 

Morphisms: Let traces(A) and traces(B ) be objects. If traces(A) ⊆ traces(B ), there is a 

morphism traces(A) →    traces(B ). 

Identities: For each object, traces(A), there is an identity traces(A) → traces(A), which 

indicates trace(A) ⊆ traces(B ). 

Composition: Given any morphisms morphA,B : traces(A) → traces(B ) and morphB,C : traces(B ) → traces(C ), with 

codomain of morphA,B = domain of morphB,C , there is traces(A) ⊆ traces(B ) ⊆ traces(C ). Thus, there is a composition 

morphism: morphB,C ◦ morphA,B : traces(A) 

→ traces(C ), which means traces(A) ⊆ traces(C ). 

Associativity: For all morphisms morphA,B : traces(A) →     traces(B ), morphB,C : traces(B ) 

→ traces(C ) and morphC,D : traces(C ) → traces(D), with codomain of morphA,B = domain of morphB,C and codomain 

morphB,C = domain of morphC,D , there is traces(A) ⊆ traces(B ) ⊆ traces(C ) ⊆ trace(D). Thus, there are morphC,D ◦ 

(morphB,C ◦ morphA,B ) = morphC,D ◦ (traces(A) →     trace(C )) = traces(A) →     traces(D), and (morphC,D ◦morphB,C 

)◦morphA,B  = (traces(B ) → traces(D)) ◦ morphA,B = traces(A) → traces(D). So, morph C,D ◦ (morphB,C ◦ morphA,B ) = 

(morphC,D ◦ morphB,C ) ◦ morphA,B 

Proposition 3. Category of Failures: Each object is of the form failures to indicate a process. A Morphism failuresa 

→ failuresb means the process with the failures from trace ⟨⟩ to the trace a evolves to the process with the failures from 

trace ⟨⟩ to the trace b, where failuresa ⊆ failuresb. 

Proof. 

Objects: Each object is failures of a process. For example, failures⟨e1 ...e2 ⟩ represents all the failures  from  trace  ⟨⟩  

to  trace  ⟨e1  . . . e2 ⟩.    failures⟨⟩    =    {(⟨⟩, X)    | ⟨⟩   ∈ traces(P )  ∧    X    ∈ refusals(P/⟨⟩)} is an object, failures⟨e1⟩  =  

{{(⟨⟩, X)  | ⟨⟩  ∈ traces(P ) ∧   X  ∈ refusals(P/⟨⟩)}, 

{(⟨e1⟩, X) | ⟨e1⟩ ∈ traces(P ) ∧   X  ∈ refusals(P/⟨e1⟩)}} is an object as well. 

Morphisms: Let failuresx and failurey be objects. If failuresx ⊆ failuresy , there is a morphism 

failuresx →    failuresy . It means process of failuresx evolves to failuresy . For example, there is a 

morphism failures⟨⟩ → failures⟨e1⟩. 

Identities: For each object, failuresm , there is an identity failuresm → failuresm , which indi- cates failuresm ⊆ 

failuresm . For example, there is a morphism failures e⟨1⟩ →    failures e⟨1⟩. 

Composition: Given any   morphisms   morphx,y :   failuresx → failuresy and morphy,z : 

failuresy → failuresz , with codomain of morphx,y = domain of morphy,z , there is failuresx ⊆ failuresy ⊆ failuresz . 

Thus, there is a composition morphism: morphy,z ◦morphx,y : failuresx → failuresz . 

Associativity: For all morphisms morphw,x : failuresw → failuresx , morphx,y : failuresx → failuresy and morphy,z 

: failuresy → failuresz , with codomain of morphw,x = domain of morphx,y and codomain 
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morphx,y = domain of morphy,z , there is failuresw ⊆ failuresx ⊆ failuresy ⊆ failuresz to represent the subset relationships 

between failures. Thus, there are morphy,z   ◦(morphx,y  ◦ morphw,x )  =   morphy,z  ◦ (failuresw   → failuresy ) = 

failuresw → failuresz , and(morphy,z ◦  morphx,y ) ◦  morphw,x = (failuresx →  failuresz ) ◦ morphw,x = 

failuresw 

→ failuresz . So, morphy,z ◦ (morphx,y ◦ morphw,x ) = (morphy,z ◦ morphx,y ) ◦ morphw,x . 
 

 
 

Illustration of Step 6: Construct Functors 

from Categories of De- sign to Categories 

of Abstraction of Implementation 

In this research, we focus on the consistency of process communications between design and implementation. 

The aim of this step is to use category theory to verify the consistency of process communications between design 

and implementation. 

To understand the consistency of process communications between design and implementation, 

several definitions are provided as follows. 

 
Definition 3.8.1. Consistency of Communications with Traces: Given a sequence of sets of traces in  the  design  

representing  the  progress  of  the  system,  DTraces   :  {⟨⟩} → {⟨⟩, ⟨devent1 ⟩} → 

·  · ·  →      {⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . ,  deventn ⟩}, and a sequence of traces in the implemen- tation representing  

the  progress  of  the  system,  ITraces   :   {⟨⟩} →      {⟨⟩, ⟨ievent1 ⟩} →      · · ·   → 

{⟨⟩, ⟨ievent1 ⟩, · · · , ⟨ievent1 , . . . , ieventn ⟩}.  If there exists a mapping from DTraces to ITtraces 

with sequence preserved, which can map {⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . , deventi ⟩} to {⟨⟩, ⟨ievent1 ⟩, 

·  · · , ⟨ievent1, . . . , ieventi⟩}, and {⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . , deventi, deventi+1 ⟩} to {⟨⟩, 

⟨ievent1 ⟩, · · · , ⟨ievent1 , . . . , ieventi , ieventi+1 ⟩},  then,  ITraces  is consistent  with  DTraces.  If  all sequences in the 

design have corresponding mapping sequences in the implementation, the commu- nications in the implementation 

are consistent with the communications in the design. 

Definition 3.8.2. Consistency of Communications with Failures: Given a sequence of commu- nications with 

failures in the design to represent the progress of communications, DFailures : failures⟨⟩ →   failures⟨devent1 ⟩ →    · · · →    

failures⟨devent1 ,...,deventn ⟩, and a sequence of communica- tions with failures in the implementation to represent the 

progress of communications, IFailures : failures⟨⟩ →     failures⟨ievent1 ⟩ →     · · · →     failures⟨ievent1 ,...,ieventn ⟩. If there exists 

a mapping from DFailures to IFailures with structure preserved between failures, which can map each trace of 
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failures⟨devent1 ,..., deventi ⟩ to the same trace of failures⟨ievent1 ,...,ieventi ⟩ with the refusals of the trace of failures⟨devent1 , ...,deventi 

⟩ being a subset of the refusals of the corresponding trace of 
failures

⟨ievent1   ,...,ieventi   ⟩
,  and  can  map  failures

⟨devent1   

,...,deventi   ⟩  
→      failures

⟨devent1   ,...,deventi+1   ⟩  
to 

failures⟨ievent1 ,...,ieventi ⟩    →   failures⟨ievent1 ,...,ieventi+1 ⟩, then IFailures is consistent 

with DFailures. If all sequences in the design have corresponding mapping sequences in the implementation, the 

communications in the implementation are consistent with the communications in the design. 

 
As functor can be used to check structure preserving between two categories, in this research, functors are used 

to verify consistency of communications with traces and failures between design and implementation [55, 56, 57, 58]. 

Successful construction of such functor means the process communications in the implementation is consistent with 

the process communications in the de- sign. Failing to construct such functor could indicate an inconsistency between 

the design and the implementation. 

To construct functors from categories of traces in design to categories of traces in abstraction of 

implementation, an approach for the construction is introduced as follows. 

• For each object, ocd, in design, there must be a corresponding object, oci, in implementation, such that ocd can 

be mapped to oci when each trace in ocd has the same trace in oci. 

• For each morphism md : ocd1 → ocd2 in design, there must be a corresponding morphism mi : oci1 → oci2 in 

implementation, such that md can be mapped to mi when ocd1 and ocd2 can be mapped to oci1 and oci2 

respectively. 

To construct functors from categories of failures in design to categories of failures in implemen- 

tation, an approach for the construction is introduced as follows. 

 
• For each object, ocd, in design, there must be a corresponding object, oci, in implementation, such that ocd can 

be mapped to oci when each trace in ocd has the same trace in oci, and the corresponding refusals in ocd are a 

subset of the corresponding refusals in oci. 

• For each morphism md : ocd1 → ocd2 in design, there must be a corresponding morphism mi : oci1 → oci2 in 

implementation, such that md can be mapped to mi when ocd1 and ocd2 can be mapped to oci1 and oci2 

respectively. 

 

Summary 

In this chapter, we propose the innovative categorical framework to verify consistency of process communications 

between design and implementation. The workflow of the framework consists of 6 steps. In the step 1, we use traces 

and failures in CSP to model and analyze design of concurrent systems. In step 2, we use Erasmus to implement 

concurrent systems. In step 3, we use Galois connections to abstract process communications out of implementation, 
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and define rules to analyze traces and failures from the abstraction of implementation. In step 4 and step 5, we use 

categories of traces and categories of failures to model design and abstraction of implementation. Finally, in step 6, 

we propose approaches to construct functors between categories for verification. 

In the next chapter, we introduce how to use the categorical framework to verify consistency of communications 

traces between design and implementation. 

 

Chapter 4 

Verifying Communications with Traces 

Introduction 

 
A process can be modeled in terms of traces that can represent the liveness of the process. In this chapter, by using 

the categorical framework, we can verify consistency of communications with traces between design and 

implementation. Section 4.2 briefs the contributions in verifying communications with traces. Section 4.3 introduces 

the categorical framework for verifying com- munications with traces between design and implementation. Section 

4.4 gives an overview of a running example to illustrate the application of the framework for verification with traces. 

Sec- tion 4.5 summarizes this chapter. 

 

Contributions 

 
Several contributions in verifying communications with traces are introduced as follows: 

 
• The framework for verification with traces is proposed. 

 
• Category theory is used to model communications with traces in design and implementation. 

 
• Functors are used to verify consistency of communications with traces between design and implementation. 
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The Framework for Verification with 

Traces 

 
As stated in Chapter 3, we apply the framework described in Chapter 3 to model and analyze the consistency of 

communications with traces. Fig. 5.1 depicts the process of communication ver- ification with traces in the categorical 

framework. The steps of the verification process are outlined next. 

 

 
 

Figure 4.1: The Categorical Framework for Verification with Traces 

 

Step 1. Design Concurrent Systems in CSP with Traces: In this step, we need to design concur- rent systems in 

CSP, and then analyze traces of processes together with communications. This step is to achieve research objective 

OBJ1. 

Step 2. Implement the Systems in Erasmus: In this step, we need to implement the concurrent systems in Erasmus 

by refining the design in step 1. This step is to achieve research objective OBJ2. Step 3. Abstract Communications 

from Implementation and Analyze Traces of Communica- tions: In this step, we need to abstract processes and 

communications out of implementation in step 2, and then, analyze traces of abstract processes as well as 

communications. This step is to achieve research objective OBJ3. 

Step 4. Build Categorical Models of Traces from Design: In this step, we need to construct categorical models for 

the design in step 1 with preserving structures of communications. This step is to achieve research objective OBJ4. 

 

 

tep 4. 

uild Categorical 
Models of Traces 

from Design 

S

tep 5. 
Build Categorical 

Models of Traces from 
Abstraction of 

Implementation 

S
tep 3. 

Abstrac
t 

Communications 
from Implementation 
and Analyze Traces of 

 

Step 2. 
Implementatio
n in Erasmus 

Step 1. 
Design 

Concurren
t 

Systems in 
CSP with 

Traces S

tep 6. 
Constructing 

Functors from 
Categories of 

Design to 
Categories of 
Abstraction of 

http://www.jetir.org/


© 2024 JETIR February 2024, Volume 11, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIRTHE2085 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e495  

Step 5. Build Categorical Models of Traces from Abstraction of Implementation: In this step, we need to construct 

categorical models for the abstraction of implementation in step 3 with preserving structures of communications. This 

step is to achieve research objective OBJ5. 

Step 6. Construct Functors from Categories of Design to Categories of Abstraction of Imple- mentation: In this 

step, we need to construct functors to verify the categorical models of the design in step 4 and the categorical model 

of abstraction of implementation in step 5. This step is to achieve research objective OBJ6. 

To illustrate the application of the framework for verification with traces, the workflow of the framework are 

described by a running example in the following sections. 

 

Illustration of a Running Example 

 
To illustrate the framework, an example with three processes Student, TeachingAssistant and Professor is 

developed. These processes collaborate as a concurrent system to deal with questions and answers as the following 

steps: 

(1) Student asks TeachingAssistant a question. 

 
(2) If TeachingAssistant can answer the question, the answer will be given to Student. Otherwise, 

TeachingAssistant will forward the question to Professor. 

 
(3) Once Professor receives the question, it will give the answer to TeachingAssistant, and then 

TeachingAssistant will forward the answer to Student. 

 
(4) steps 1,2,3 can repeat indefinitely. 

 
In the requirements, there are two communication scenarios. In the first scenario, the TeachingAssis- tant can answer 

the question. In the second scenario, Professor helps TeachingAssistant to answer the question. 

Illustration of Step 1: Design Concurrent 

Systems in CSP with Traces 

 
The aim of this step is to design and analyze the processes and the concurrent system in CSP based on the textual 

description of the system requirements. 
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Step1.a: Model the Conceptual Design 

 
As CSP can model and specify processes in concurrent system, for this example, the design of the above described 

system is specified as follows: 

 
Stud =sq → ta → StudProf =tq →

 pa → Prof 

TA =((sq → ta → TA) H (sq → tq → TA)) Q (pa → ta → TA) 

 
In this design, event sq indicates the question asked by Student to TeachingAssistant; event ta repre- sents the answer 

given by TeachingAssistant to Student; event tq stands for the question forwarded by TeachingAssistant to Professor; 

event pa describes the answer given by Professor to Teachin- gAssistant; →  denotes the “occurs before” relation 

between events; H means the nondeterministic 

choices made by the process itself; and Q stands for the deterministic choices based on the event 

from the environment. 

 
 

Step1.b: Generate and Analyze Traces 

 
Traces in CSP are used to analyze behaviors of a concurrent system. A trace of events represents a sequential 

record of the behavior of a process. A process behaves in different ways leading to different traces of events. 

To generate and analyze traces of processes in CSP, according to Chapter 3, the following rules defined in CSP 

[4, 5] are used in this research. 

 

traces(c → P ) ={⟨⟩} ∪   {⟨c⟩
-t | t ∈ traces(P )} 

traces(P ; Q) =traces(P ) ∪   {s-t | s-
⟨C⟩ ∈ P, t ∈ traces(Q)} 

traces(P Q Q) =traces(P ) ∪ traces(Q) traces(P H Q) =traces(P 

) ∪ traces(Q) 

traces(P ǁ Q) =traces(P ) ∩ traces(Q) 

 
 

Model Individual Processes with Traces 

For the above mentioned example, all possible traces of each process Student, TeachingAssis- tant, and Professor 

can be generated, analyzed and represented from the CSP specification of the design as follows: 

 

traces(Stud )  ={⟨⟩,  ⟨sq ⟩,  ⟨sq , ta⟩
-t   | t   ∈ traces(Stud )} traces(Prof  )  ={⟨⟩,  

⟨tq ⟩,  ⟨tq, pa⟩
-t   | t   ∈ traces(Prof  )} traces(TA) ={⟨⟩, ⟨sq ⟩, ⟨sq, ta⟩

-t  | t  ∈ 
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traces(TA)} 

∪   {⟨⟩, ⟨sq ⟩, ⟨sq, tq⟩
-t  | t  ∈ traces(TA)} 

∪   {{⟨⟩, ⟨pa⟩, ⟨pa, ta⟩
-t  | t  ∈ traces(TA)} 

 
In this listing of traces, the function traces stands for generating a set of all possible traces; t in t ∈ traces(P) is one of 

the traces of process P ; ⟨event1, · · · , eventn⟩ indicates the a specific trace of events; - concatenates two traces into one; 

and {traces1 } ∪ behave as either {traces1 } or {traces2 }. 

Model Communications between Processes  with Traces 

{traces2 } denotes the process may
 

When processes Student, TeachingAssistant, and Professor work in parallel as a system, CSP operator “ǁ” models 

communication between processes. According to CSP, if there is a communi- cation between two processes, there 

must be an event that occurs in both processes simultaneously. The set of all possible traces of the system can be 

generated, analyzed and represented from the 

 

CSP specification of the design as follows: 

 

traces(Stud ǁ TA ǁ Prof ) = 

{⟨⟩, ⟨sq ⟩, ⟨sq, ta⟩
-t  | t  ∈ traces (Stud ǁ TA ǁ Prof )} 

∪   {⟨⟩, ⟨sq ⟩, ⟨sq, tq ⟩, ⟨sq, tq, pa⟩, ⟨sq, tq, pa, ta⟩
-t  | t  ∈ traces(Stud ǁ TA ǁ Prof )} 

 
According to the generated traces of events of processes running in parallel, the system should behave as either 

TeachingAssistant answers the question from Student directly, or TeachingAssistant asks help from Professor to 

answer Student. 

Fig.4.2 shows a representation of traces(Stud ǁ TA ǁ Prof ) as a directed graph: 

 

 

 

 
Figure 4.2: Traces of Communications between Student, TeachingAssistant and Professor 

 

 

 

 

 

pa ta 

sq 
t
q 

ta 
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Illustration of Step 2: Implement the 

systems in Erasmus 

 
The aim of this step is to implement the processes and the concurrent system in Erasmus based 

on the design. 

In this implementation, there are two scenarios: TeachingAssistant answering the question from Student, and 

TeachingAssistant resorting to help from Professor to answer the question from Stu- dent. To communicate with each 

other, two processes need to build a channel between their ports. For example, process Student can ask a question 

through port s, then the question passes through the channel SQuestion, and the question is received on port s by 

process TeachingAssistant. 

 
The Erasmus implementation is as follows. 

 

 
Prot = protocol { squestion | tanswer | tquestion | panswser } 

//accept question or answer 

 

 
Student= process -s:Prot, +t:Prot { loop { 

s.squestion;//ask the question via port s t.tanswer; //receive the answer via port t 

} 

} 

 

 
TeachingAssistant = process +s:Prot, -t:Prot, +p:Prot, -t’:Prot { loop 

select{ //deterministic choices depend on the environment 

||s.squestion; //receive the question from Student via port s case{ //nondeterministic choices made by the 

process 

|| t.tanswer; //send the answer to Student via port t 

|| t’.tquestion; } //ask the question to Professor via port t’ 

||p.panswer; //receive the answer from Professor via port p t.tanswer; //send the answer to Student via port t 

} 

} 

Professor = process +t’:Prot, -p:Prot { loop{ 

t’.tquestion; //receive the question from TeachingAssistant p.panswser; //send the answer to 

TeachingAssistant 

} 
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} 

 

 
System = cell{ //encapsulate processes 

// channels to connect ports 

SQuestion, TAnswer, T’Question, PAnswer: Prot; Student(SQuestion,TAnswer); 

TeachingAssistant(SQuestion,TAnswer,PAnswer,T’Question); Professor(T’Question,PAnswer); 

} 

 

 

Illustration of Step 3: Abstract 

Communications from Implementation 

and Analyze Traces of Communications 

Since the interest in this thesis is in analyzing the behaviors of the system based on traces of events, an abstraction 

is created for extracting the code pertaining to generate traces of events. The aim of this step is to use Galois 

connection to abstract processes and communications from the implementation, and analyze processes and 

communications with traces in Erasmus. 

 

Step3.a: Abstract the Implementation 

 

According to the abstraction rules in Chapter 3, the abstraction of implementation contains loops, deterministic 

choices, nondeterministic choices, sending and receiving messages through ports. The abstraction of the Erasmus 

implementation is provided as follows. 

 

Student = 

loop{ 

s.squestion; 

t.tanswer 

} 

 

TeachingAssistant= 

loop 
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select { ( 

s.squestion; 

case{ 

t.tanswer 

|t’.tquestion 

} 

) 

|{ p.panswer ; 

t.tanswer} 

} 

Professor= 

loop{ 

t’.tquestion; 

p.panswer 

} 

 
In the above mentioned abstraction of implementation, loop can be defined by recursion; selec- t together with | 

represent deterministic choices; case together with | represent nondeterminis- tic choices; the notation 

PROCESS.port.message(for example TeachingAssistant.s.squestion) rep- resents message(squestion) that occurs on 

PROCESS(TeachingAssistant) through port(s); and the symbol “;” is the operator to indicate the “occurs before” 

relation between messages. 

In this example, implementation is considered as concrete domain, and abstraction is considered as abstract 

domain. The relationships “execute before or simultaneously” between statements in abstraction are maintained in 

implementation, and vice versa. The details of mappings for the example are shown in Fig. 4.4. 
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Implementation (concrete domain) Abstraction 

(abstract domain)

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.4: Mappings Between Implementation and Abstraction of the Student, Teaching Assistant and Professor Example

 

Prot = protocol { question | answer } 
 

Student= process -s:Prot, 
+t:Prot { loop { 

s
.squestion; 
t.tanswer; 
} 

} 

Student 
= 

loop{ 
s.

squestion; 
t.tanswer 
 

TeachingAssistant = process +s:Prot, -t:Prot, +p:Prot, -t':Prot { 
loop 

select{ 
|

|s.squestion; 
case{ 

|canAnswer| then 
t.tanswer; 

|| t'.tquestion; 
} 

|
|p.panswer; 
t.tanswer; 

} 
 

TeachingAssistant= 
loop 

s
elect { 
( 

s
.squestion; 
case{ 

.tanswer 

t'.tquestion 
} 

) 
|{ 

Professor = process +t':Prot, -p:Prot { 
loop{ 

t'.
tquestion; 
p.panswer; 
} 

} 

Professor
= 

loop{ 
t'.

tquestion; 
p.panswer 
 

System = cell{ 
SQuestion, TAnswer, T'Question, PAnswer: Prot; 

Student(SQuestion,TAnswer); 
TeachingAssistant(SQuestion,TAnswer,PAnswer,T'Question); 
Professor(T'Question,PAnswer); 

} 
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Step3.b: Generate and Analyze Traces 

 
Although the syntax of Erasmus is different from CSP, the semantics of Erasmus is analogous to CSP. Some notations 
that model traces of events in CSP can be also used to model traces of events in Erasmus with preserving the same 

syntax and semantics, which includes -, ∪  , ⟨⟩, H and Q. Like CSP, traces in Erasmus does not distinguish H from Q. 

To generate and analyze the traces of processes in Erasmus, according to Chapter 3, the following rules are used in this 

research. 

 
 

(1)traces(pt.m) = {⟨⟩, ⟨pt.m⟩} 
 

(2)traces(pt.m1 ; pt.m2 ) = {⟨⟩, ⟨pt.m1 ⟩, ⟨pt.m1 , pt.m2 ⟩} 

(3)traces(loop{pt.m}) = {⟨⟩} ∪   {⟨pt .m⟩
-t  | t  ∈ traces(loop{pt.m})} (4)traces(case{pt.m1 

| · · · | pt.mn }) = traces(pt.m1 ) ∪ · · · ∪ traces(pt.mn ) (5)traces(select{pt.m1 | · · · | pt.mn }) = 

traces(pt.m1 ) ∪ · · · ∪ traces(pt.mn ) 

 

For each process in the abstract implementation, the traces of events are generated and analyzed as follows. 

 
traces(Student ) =traces(loop {s.squestion; t .tanswer }) 

= {⟨⟩, ⟨s .squestion⟩, ⟨s .squestion, t .tanswer ⟩
-t  | t  ∈ traces(Student )}, 

 
 

traces(TeachingAssistant ) = 
 

traces(loop select {(s.squestion; case {t.tanswer | t J.tquestion}) | (p.panswer ; t .tanswer )}) 

= {{⟨⟩, ⟨s .squestion⟩, ⟨s .squestion, t .tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )}} 

∪  {{⟨⟩, ⟨s .squestion⟩, ⟨s .squestion, t J.tquestion⟩
-t  | t  ∈ traces(TeachingAssistant )}} 

∪  {{⟨⟩, ⟨p.panswer ⟩, ⟨p.panswer, t .tanswer ⟩
-t  | t  ∈ traces (TeachingAssistant )}}, 

 
 

traces(Professor ) =traces(loop {t J.tquestion; p.panswer }) 

= {⟨⟩, ⟨t J.tquestion⟩, ⟨t J.tquestion, p.panswer ⟩
-t  | t  ∈ traces(Professor )}. 

 
In the implementation, when one process communicates a message with another process, there is an event that 

occurs simultaneously on both processes. In the above implementation of the example, ports with the same name in 

different processes are connected by a channel. For example, port s of process Student can send a question to port s 

of process TeachingAssistant, and there is an event squestion. The event squestion occurs on both Student and 

TeachingAssistant simultaneously during the communication. The two ports are connected by channel SQuestion 

according to the implementation. 
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To generate and analyze the traces of concurrent systems in the implementation in Erasmus, the function traces() 

together with the symbol ǁ are defined as follows. 

(1) Given a process P with port pt1 and a process Q with port pt2, pt1 and pt2 are connected to a channel ch. P has a 

trace p, and Q has a trace q. The head of p and q are events p0 and q0 respectively, and the tail of p and q are 

traces pJ and qJ respectively. When p and q run in parallel, 

 
traces(P ǁ Q) ={⟨⟩} ∪   {⟨m1⟩

-t | m1 = p0, m1 = q0, t ∈ traces(P/p0  ǁ Q/q0 )} 

 

(2) Given processes P1, · · ·, Pn, when they run in parallel as a system, 

 

traces(P1 ǁ· · · ǁPn ) = traces(P1 )ǁ· · · ǁtraces(Pn ) 

 

 
For each of the two scenarios for the system in the implementation, the traces of events are generated and analyzed 

as follows. 

Scenario 1: TeachingAssistant answers the question. 

 
 

traces(Student ǁTeachingAssistant ǁProfessor ) 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-t  | t  ∈ traces(Student )} 

ǁ{⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨⟩, ⟨panswer ⟩, ⟨panswer, tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} ǁ{⟨⟩, 

⟨tquestion⟩, ⟨tquestion, panswer ⟩
-t  | t  ∈ traces(Professor )} 

={⟨⟩, ⟨squestion⟩
-s  | 

s ∈ {{⟨tanswer ⟩
-t  | t  ∈ traces(Student )} 

ǁ{⟨tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨tquestion⟩
-t  | t  ∈ traces(TeachingAssistant )} 

ǁ{⟨⟩, ⟨tquestion⟩, ⟨tquestion, panswer ⟩
-t  | t  ∈ traces(Professor )}}} 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-s  | 

s ∈ traces(Student )ǁtraces (TeachingAssistant )ǁtraces(Professor )} 

 
 

In scenario 1, Student sends squestion to TeachingAssistant, and then TeachingAssistant sends tan- swer to Student. 

Scenario 2: Professor helps TeachingAssistant to answer the question. 
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traces(Student ǁTeachingAǁProfessor ) 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-t  | t  ∈ traces(Student )} 

ǁ{⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨⟩, ⟨panswer ⟩, ⟨panswer, tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} ǁ{⟨⟩, 

⟨tquestion⟩, ⟨tquestion, panswer ⟩
-t  | t  ∈ traces(Professor )} 

={⟨⟩ ⟨squestion⟩
-s  | 

s ∈ {{⟨tanswer ⟩
-t  | t  ∈ traces(Student )} 

ǁ{⟨tanswer ⟩
-t  | t  ∈ traces(TeachingAssistant )} 

∪   {⟨tquestion⟩
-t  | t  ∈ traces(TeachingAssistant )} 

ǁ{⟨⟩, ⟨tquestion⟩, ⟨tquestion, panswer ⟩
-t  | t  ∈ traces(Professor )} 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩
-s  | s  ∈ 

{{⟨tanswer  ⟩
-t | t ∈ traces(Student  )} 

ǁtraces(TeachingAssistant ) 

ǁ{⟨panswer ⟩
-t  | t  ∈ traces(Professor )}}} 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩, ⟨squestion, tquestion, panswer ⟩
-s  | 

s ∈ {{⟨tanswer ⟩
-t  | t  ∈ traces(Student )} ǁ{⟨tanswer ⟩

-t  | t  ∈ 

traces(TeachingAssistant )} ǁtraces(Professor )}}} 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩, ⟨squestion, tquestion, panswer ⟩, 

⟨squestion, tquestion, panswer, tanswer ⟩
-s  | 

s ∈ traces(Student )ǁtraces (TeachingAssistant )ǁtraces(Professor )} 

 
 

In scenario 2, Student sends squestion to TeachingAssistant, and then TeachingAssistant sends tques- tion to 

Professor. After receiving tquestion, Professor sends tanswer to TeachingAssistant, and then TeachingAssistant sends 

tanswer to Student. 

The event traces modeling the communications in both scenarios 1 and 2 are formalized below. 

 

 
traces(Student ǁTeachingAssistant ǁProfessor ) 

={⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩
-s  | 

s ∈ traces(Student )ǁtraces (TeachingAssistant )ǁtraces(Professor )} 
 

∪   {⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩, ⟨squestion, tquestion, panswer ⟩, 

⟨squestion, tquestion, panswer, tanswer ⟩
-s  | 

s ∈ traces(Student )ǁtraces (TeachingAssistant )ǁtraces(Professor )} 
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According to the generated traces of events, the system in implementation will first behave as 

{⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩} or {⟨⟩, ⟨squestion⟩, ⟨squestion, tquestion⟩, ⟨squestion, tquestion, panswer ⟩, ⟨squestion, 

tquestion, panswer, tanswer ⟩} , and then behave as traces(Student ) 

ǁtraces(TeachingAssistant )ǁtraces(Professor ). 

 

Illustration of Step 4: Build Categorical 

Models of Traces from Design 

 
The aim of this step is to construct categories for modeling progress of communications in the design. The progress 

of communications can be indicated by traces of events. In Chapter 3, the categories of traces in proposition 2 are 

provided as follows. 

• Category of Traces: Each object is a set of traces to indicate a process. A morphism traces(A) → traces(B) 

means traces of process A evolves to traces of process B, where traces(A) ⊆ traces(B). 

Proof of constructing category of traces is provided in Chapter 3. 

 
Proposition 4. DEvents is a type of category of traces. It captures the designed behaviors of the system based on 

traces of events extracted from the design. In DEvents, each object represents a set of traces of communications the 

system designed; each morphism models ⊆ relationship between sets of traces to indicate the progress of the system; 

and each identity represents the set of traces ⊆ itself. The category DEvents is a type of category of traces. 

Fig. 4.5 illustrates part of DEvents category with the first few traces of unbounded sequences. 
 
 

 

 
Figure 4.5: Category of Traces from the Design 

 

 

 

 

 

  

Category:DEvents ≤ 
≤ 

≤ ≤ 
{<>,<sq>, 
<sq, tq>} 

≤ 

≤ 

≤ 
{<>,<sq>, 
<sq, tq>,

 ≤ 

{<>,<sq>,<sq, 
tq>, 

<sq,tq,pa>, 
<sq,tq, pa,ta>} {<>} 

≤ 

{<>,<sq>} 
≤ 

≤ {<>,<sq>, 
<sq, ta>} 
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Proof. 

Objects: Each object is a set of traces of events, such as {⟨⟩}, {⟨⟩, ⟨sq⟩}, and {⟨⟩, ⟨sq⟩, ⟨sq, tq⟩}. 

Morphisms: Let traces(A) and traces(B ) be objects. If traces(A) ⊆ traces(B ), there is a 

morphism traces(A) → traces(B ). 

Identities: For each object, traces(A), there is an identity traces(A) → traces(A), which indicates traces(A) ⊆ 

traces(A). 

Composition: Given any morphisms morphA,B : traces(A) → traces(B ) and morphB,C : 

traces(B ) → traces(C ), with codomain of morphA,B = domain of morphB,C , there is traces(A) ⊆ 

traces(B ) ⊆ traces(C ). Thus, there is a composition morphism: morphB,C ◦ morphA,B : traces(A) 

→ traces(C ), which means traces(A) ⊆ traces(C ). 

Associativity: For all morphisms morphA,B : traces(A) →     traces(B ), morphB,C : traces(B ) 

→ traces(C ) and morphC,D : traces(C ) → traces(D), with codomain of morphA,B = domain of morphB,C and codomain 

morphB,C = domain of morphC,D , there is traces(A) ⊆ traces(B ) ⊆ traces(C ) ⊆ trace(D). Thus, there are morphC,D ◦ 

(morphB,C ◦ morphA,B ) = morphC,D ◦ (traces(A) →     trace(C )) = traces(A) →     traces(D), and (morphC,D ◦morphB,C 

)◦morphA,B  = (traces(B ) → traces(D)) ◦ morphA,B = traces(A) → traces(D). So, morph C,D ◦ (morphB,C ◦ morphA,B ) = 

(morphC,D ◦ morphB,C ) ◦ morphA,B 

 

Illustration of Step 5: Build Categorical 

Models of Trace from Abstraction of 

Implementation 

The aim of this step is to construct categories for communications in the abstraction of imple- mentation. The 

progress of communications can be indicated by traces of events. In Chapter 3, the categories of traces in proposition 

2 is provided as follows. 

• Category of Traces: Each object is a set of traces to indicate a process. A morphism traces(A) → traces(B) 

means traces of process A evolves to traces of process B, where traces(A) ⊆ traces(B). 

Proof of constructing category of traces is provided in Chapter 3. 

 
Proposition 5. IEvents is a type of category of traces. It captures the implemented behaviors of the system based on 

traces of events extracted from the abstraction in section 5.4.3. In IEvents, each object represents a trace of events of 

the system implemented; each morphism models ⊆ relationship 

between sets of traces to indicate the progress of the system; and each identity represents the set of traces ⊆ itself. 
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Fig. 4.6 illustrates part of IEvents category with the first few traces of unbounded sequences. 
 
 

 
Figure 4.6: Category of Traces from the Implementation 

 

 
Proof. 

Objects: Each object is a set of traces of events, such as {⟨⟩} and {⟨⟩, ⟨squestion⟩}. 

Morphisms: Let traces(A) and traces(B ) be objects. If traces(A) ⊆ traces(B ), there is a 

morphism traces(A) → traces(B ). 

Identities: For each object, traces(A), there is an identity traces(A) → traces(A), which indicates 

traces(A) ⊆ traces(A). 

Composition: Given any morphisms morphA,B : traces(A) → traces(B ) and morphB,C : 

traces(B ) → traces(C ), with codomain of morphA,B = domain of morphB,C , there is traces(A) ⊆ 

traces(B ) ⊆ traces(C ). Thus, there is a composition morphism: morphB,C ◦ morphA,B : traces(A) 

→ traces(C ), which means traces(A) ⊆ traces(C ). 

Associativity: For all morphisms morphA,B : traces(A) →     traces(B ), morphB,C : traces(B ) 

→ traces(C ) and morphC,D : traces(C ) → traces(D), with codomain of morphA,B = domain of morphB,C and codomain 

morphB,C = domain of morphC,D , there is traces(A) ⊆ traces(B ) ⊆ traces(C ) ⊆ trace(D). Thus, there are morphC,D ◦ 

(morphB,C ◦ morphA,B ) = morphC,D ◦ (traces(A) →     trace(C )) = traces(A) →     traces(D), and (morphC,D ◦morphB,C 

)◦morphA,B  = 

(traces(B) → traces(D)) ◦ morphA,B = traces(A) → traces(D). So, morphC,D ◦ (morphB,C ◦ 

morphA,B ) =  (morphC,D ◦ morphB,C ) ◦ morphA,B 

 

 

 

 

 

 

  

Category:IEvents 

≤ 

≤ 
{<>,<squestion>, 

<squestion, tquestion>} ≤ 

≤ 
{<>,<squestion>, 

<squestion, tquestion>, 
<squestion,tquestion,panswer>

} 
≤ ≤ 

≤ 
{<>} {<>,<squestion>} 

≤ 
≤ 

≤ 

{<>,<squestion>, 
<squestion, tanswer>} 

≤ 
{<>,<squestion>, 

<squestion, tquestion>, 
<squestion,tquestion,panswer>, 

<squestion,tquestion, 
panswer,tanswer>} 
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Illustration of Step 6: Construct Functors 

from Categories of Design to Cate- gories 

of Abstraction of Implementation 

The aim of this step is to verify consistency between design and implementation by constructing categories and 

functors. According to Chapter 3, consistency between the design and the implemen- tation is defined as follows. 

Consistency of Communications with Traces: Given a sequence of sets of traces in the de- 

sign  representing  the  progress  of  the  system,  DTraces   :   {⟨⟩} → {⟨⟩, ⟨devent1 ⟩} → · · ·   → 

{⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . , deventn ⟩}, and a sequence of traces in the implementation rep- resenting the 

progress of the system, ITraces  :  {⟨⟩} → {⟨⟩, ⟨ievent1 ⟩} → · · ·  → {⟨⟩, ⟨ievent1 ⟩, 

· · · , ⟨ievent1 , . . . , ieventn ⟩}. If there exists a mapping from DTraces to ITtraces with sequence pre- served, which 

can map {⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . , deventi ⟩} to {⟨⟩, ⟨ievent1 ⟩, · · · , ⟨ievent1, 

. . . , ieventi⟩}, and {⟨⟩, ⟨devent1 ⟩, · · · , ⟨devent1 , . . . , deventi, deventi+1 ⟩} to {⟨⟩, ⟨ievent1 ⟩, · · · , 

⟨ievent1, . . . , ieventi, ieventi+1⟩}, then ITraces is consistent with DTraces. If all sequences in the design have 

corresponding mapping sequences in the implementation, the communications in the implementation are consistent 

with the communications in the design. 

To verify consistency of communications with traces between design and implementation, the construction of a 

functor can be used [55, 56, 57, 58]. If there exists a functor that maps the category of traces from design to the 

category of traces from implementation, the implementation is consis- tent with the design. Otherwise, the 

implementation is inconsistent with the design. According to Chapter 3, the functor can be constructed with the 

following approach. 

 

• For each object, ocd, in design, there must be a corresponding object, oci, in implementation, such that ocd can 

be mapped to oci when each trace in ocd has the same trace in oci. 

• For each morphism md : ocd1 → ocd2 in design, there must be a corresponding morphism mi : oci1 → oci2 in 

implementation, such that md can be mapped to mi when ocd1 and ocd2 can be mapped to oci1 and oci2 

respectively. 

Based on the analysis of categories DEvents and IEvents,the consistency between the design and the 

implementation is verified by constructing a functor DToI: DEvents → IEvents. This functor maps objects and 

morphisms of DEvents to the corresponding objects and morphisms of IEvents as follows: 

• Objects Mapping: an object od of DEvents maps to an object oi of IEvents, when the trace in od matches the 
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trace in oi. For example, {⟨⟩, ⟨squestion⟩} in IEvents represents an event that Student  sends  a  question  to  

TeachingAssistant  in  the  implementation,  and  {⟨⟩,  ⟨sq  ⟩} in DEvents represents an event that Student sends 

a question to TeachingAssistant in the design. Thus, {⟨⟩, ⟨sq ⟩} matches {⟨⟩, ⟨squestion⟩}. 

• Morphisms Mapping: a morphism md : od1 →    od2 of DEvents maps to a morphism mi : oi1 →    oi2 of IEvents, 

when od1 and od2 match oi1 and oi2 respectively, and →     from od1 to od2  matches →     from oi1  to oi2.  For 

example, {⟨⟩, ⟨sq⟩} →     {⟨⟩, ⟨sq ⟩, ⟨sq, ta⟩} maps to 

{⟨⟩, ⟨squestion⟩} → {⟨⟩, ⟨squestion⟩, ⟨squestion, tanswer ⟩}. 

 
• Identities Mapping: By following the objects mapping and morphisms mapping, identity mapping is preserved 

from DEvents to IEvents. 

 

• Composition Morphisms Mapping: By following the objects mapping and morphisms map- ping, compositions 

of morphisms mapping are preserved from DEvents to IEvents. 

 

Fig. 4.7 shows that DToI: DEvents → IEvents is a functor. 

A successful construction of the functor DToI indicates that the implementation and the design are consistent. 

 

Summary 

 
In this chapter, the categorical framework is used to verify consistency of communications with traces between 

design and implementation. This framework used traces, category theory and ab- straction of implementation, and is 

illustrated by a running system with processes Student, Teachin- gAssistant and Professor executing in parallel. In 

doing so, the design of the system is modeled and 
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Figure 4.7: A Functor from the Category of Traces in Design to the Category of Traces in the Abstraction of Implementation 

 
analyzed by CSP, the implementation of the system is created by Erasmus, traces of events of the implementation are 

analyzed based on abstraction, categories of traces of events from the design and implementation are created, and, by 

constructing a functor, the consistency between the design and the implementation is verified. 

In the next chapter, we introduce how to use the categorical framework to verify consistency of communications 

failures between design and implementation.

DToI 
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 ≤ 

{<>,<sq>,<sq, 
tq>, 
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Chapter 5 

Verifying Communications with Failures 

Introduction 

 
A process can be modeled in terms of failures that can represent both liveness and safety of the process. In this 

chapter, by using the categorical framework, we can verify consistency of com- munications with failures between 

design and implementation. Section 5.2 briefs the contributions in verifying communications with failures. Section 

5.3 introduces the categorical framework for verifying communications with failures between design and 

implementation. Section 5.4 gives an overview of a running example with three different implementation scenarios 

to illustrate the appli- cation of the framework for verification with failures. Section 5.5 summarizes this chapter. 

 

Contributions 

 
Several contributions in verifying communications with failures are introduced as follows: 

 
• The framework for verification with failures is proposed. 

 
• Category theory is used to model communications with failures in design and implementation. 

 
• Functors are used to verify consistency of communications with failures between design and implementation. 

The Framework for Verification with 

Failures 
 

As stated in Chapter 3, we apply the framework to model and analyze the consistency of com- munications with 

failures. Fig. 5.1 depicts the process of communication verification with failures in the categorical framework. The 

steps of the verification process are outlined next. 
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Step 2. 

Implement 
the systems in 

Erasmus 

 

 
Figure 5.1: The Categorical Framework for Verification with Failures 

 

Step 1. Design Concurrent Systems in CSP with Failures: In this step, we need to design concurrent systems in 

CSP, and then analyze failures of processes together with communications. This step is to achieve research objective 

OBJ1. 

Step 2. Implement the Systems in Erasmus: In this step, we need to implement the concurrent systems in Erasmus 

by refining the design in step 1. This step is to achieve research objective OBJ2. Step 3. Abstract Communications 

from Implementation and Analyze Failures of Communica- tions: In this step, we need to abstract processes and 

communications out of the implementation in step 2, and then analyze failures of abstract processes as well as 

communications. This step is to 

achieve research objective OBJ3. 

Step 4. Build Categorical Models of Failures from Design: In this step, we need to construct categorical models 

for the design in step 1 with preserving structures of communications. This step 

is to achieve research objective OBJ4. 

Step 5. Build Categorical Models of Failures from Abstraction of Implementation: In this step, we need to 

construct categorical models for the abstraction of implementation in step 3 with preserving structures of 

communications. This step is to achieve research objective OBJ5. 

Step 6. Construct Functors from Categories of Design to Categories of Abstraction of Imple- mentation: In this 

step, we need to construct functors to verify the categorical models of the design in step 4 and the categorical model 

of abstraction of implementation in step 5. This step is to achieve research objective OBJ6. 

To illustrate the process of verification with failures, the workflow of the framework are de- scribed by a running 

example in the following sections. 
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Illustration of a Running Example 

To illustrate the categorical framework, a client/server example is developed. In the example, the concurrent 

system consists of two processes server and client. 

• The server can provide two types of service, serviceA and serviceB. The client can request 

serviceA and serviceB. 

 
• In the beginning, the client lets the server know the type of service it requests. 

 
• Then, the client sends the information related to the requested service to the server. 

 
• At last, the client receives the corresponding results from the server. 

 
• The client can repeatedly request service from server. 

 
The graphical representation of this example is given in Fig. 5.2. 

According to the software development process, we develop the design in CSP based on the requirements 

specification of the example, then we refine the design into the implementation in Erasmus. In order to demonstrate 

the application of the framework can indicate whether commu- nications of process are consistent or inconsistent 

between design and and implementation. In the implementation stage, we develop three different scenarios. 

 

 

Request Service 

Information Results  

 

Client Server 

 

 
Figure 5.2: The Client/Server Example 

 

• In the first scenario, the server offers three types of services that are serviceA, serviceB and 

serviceC. 

 
• In the second scenario, the server offers only one type of services that is serviceA. 

 
• In the third scenario, the server offers serviceA and serviceB as designed. 

 
With the application of the categorical framework for verification with failures to the example, the consistency of 

client/server communications between the design and the implementation can be verified automatically. 
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Illustration of Step 1: Design Concurrent 

Systems in CSP with Failures 

 
The aim of this step is to design and analyze the processes and the concurrent system in CSP based on the textual 

description of the system requirements. 

 

Step 1.a: Model the Conceptual Design 

 
As CSP can model and specify processes in concurrent system, for this example, the design of the above described 

system is specified as follows: 

 
client =requestA → infoA → resultA → client H requestB → infoB → resultB → 

 

client server =requestA → infoA → resultA → Server Q requestB → infoB → resultB 

→   Server 

In this design, client represents the process client; server represents the process server; reques- tA,infoA,resultA, 

requestB,infoB,resultB are events communicated between process client and pro- cess server; →  denotes the “occurs 

before” relation between events; H means the nondeterministic 

choices made by the process itself; and Q stands for the deterministic choices based on the event 

from the environment. 

 
 

Step 1.b: Generate and Analyze Failures 

 
To analyze the behaviors of a concurrent system, we need to analyze failures. Failures of a process is defined as 

a relation (set of pairs) 

failures(P ) = {(s, X) | s ∈ traces(P ) ∧   X ∈ refusals(P/s)} 

 
If (s, X) is a failure of P , this means that P can engage in the sequence of events recorded by s, and then, refuse to do 

anything more, in spite of the fact that its environment is prepared to engage in any of the events of X [4]. 

To generate and analyze failures of processes in CSP, according to Chapter 3, several rules defined in CSP [4, 5] 

are used in this research. 
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failures(c → P ) ={(⟨⟩, X)|c ∈/ X} ∪   {(⟨c⟩
-s, X) | (s, X) ∈ failures(P )} 

failures(P ; Q) ={(s, X)|s ∈ A∗  
∧   (s, X ∪   {C}) ∈ failures(P )} 

∪   {(s-t, X) | s-
⟨C⟩ ∈ (traces)(P ) ∧   (t, X) ∈ failures(Q)} failures(P  Q Q) ={(⟨s⟩, X) | (⟨⟩, 

X) ∈ failures(P ) ∩   failures(Q) 

∨ (s /= ⟨⟩ ∧ (s, X) ∈ failures(P ) ∪ failures(Q))}failures(P 

 

H Q) =failures(P ) ∪ failures(Q) 
 

failures(P ǁ Q) ={(s, X ∪ Y ) | s ∈ A∗ 
∧  (s, X) ∈ failures(P ) ∧  (s, Y ) ∈ failures(Q)} 

Model Individual Processes with Failures 

 

For the client/server example, according to the above mentioned rules of CSP, failures of pro- cesses client and server 

can be generated and analyzed as follows: 

 
failures(client ) = 

 

{{(⟨⟩, X) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, resultB }}, 

{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB }}, 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB, resultB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

. . . } 

 

 
failures(server ) = 

 

{{(⟨⟩, X) | X  ⊆ {infoA, resultA, infoB, resultB }}, 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, resultB }}, 

{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB }}, 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB, resultB ⟩, X ) | X  ⊆ {infoA, resultA, infoB, resultB }}, 

. . . } 
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In this listing of failures, failures(P) stands for generating a set of all possible failures of process P ; X in (trace, X ) 

is a refusal of the trace; ⟨event1, · · · , eventn⟩ indicates a specific trace of events. 

 
 

Model Communications between 

Processes with Failures 

 
When processes client and server work in parallel as a system, CSP operator “ǁ” models com- munication between 

processes. According to CSP, if there is a communication between two process- es, there must be an event that occurs 

in both processes simultaneously. Failures of communications between client and server can be generated, analyzed 

and represented as follows: 

 
failures(client ǁ server ) = 

 

{{(⟨⟩, X) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA, requestB, infoB, resultB }} 

{(⟨requestB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, resultB }} 

{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA, requestB, infoB, resultB }} 

{(⟨requestB, infoB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB }} 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }} 

{(⟨requestB, infoB, resultB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }} 

. . . } 

 
 

 

Illustration of Step 2: Implement the 

Systems in Erasmus 

 
The aim of this step is to implement the processes and the concurrent system in Erasmus based on the design. As 

there are three different scenarios, each will be implemented in Erasmus in the following sections. 
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Implement Scenario 1 

In this scenario, process server provides serviceA, serviceB and serviceC, and process client requests all services from 

server. The Erasmus code for the implementation is as follows. 

 
match = protocol { requestA|infoA|ˆresultA 

|requestB|infoB|ˆresultB 

|requestC|infoC|ˆresultC} 

//message without ˆ is a request. 

//message with ˆ in front is a reply. 

//all messages in communications 

//requests and info are sent by client 

//results are sent by server 

 

 
server = process p: +match{ //process server loop select{ 

||p.requestA; p.infoA; p.resultA; //serviceA 

||p.requestB; p.infoB; p.resultB; //serviceB 

||p.requestC; p.infoC; p.resultC;} //serviceC 

} 

 

 
client = process e: -match{ //process client loop case{ 

||e.requestA; e.infoA; e.resultA; //serviceA 

||e.requestB; e.infoB; e.resultB; //serviceB 

||e.requestC; e.infoC; e.resultC;} //serviceC 

} 

 
//encapsulate processes 

Main = cell{ m: Channel match; server(m); client(m); } 

 
 

Implement Scenario 2 

In this scenario, process server is implemented to provide only one type of service, and process client is 

implemented to request the service from server. The Erasmus code for the implementation is as follows. 

 

match = protocol {requestA |infoA |ˆresultA} 

//message without ˆ is a request. 

//message with ˆ in front is a reply. 

//all messages in communications 

//requests and info are sent by client 
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//results are sent by server 

 

 
server = process p: +match{ //process server loop{ 

p.requestA; p.infoA; p.resultA; } //serviceA 

} 

 

 
client = process e: -match{ //process client loop{ 

e.requestA; e.infoA; e.resultA; } //serviceA 

} 

 

 
//encapsulate processes 

Main = cell{m: Channel match; server(m); client(m);} 

 
 

Implement Scenario 3 

 
In this scenario, process server provides serviceA and serviceB, and process client requests both services from 

Server. The services implemented in this scenario are as same as the services in the design. The Erasmus code for the 

implementation is as follows. 

 

match = protocol { requestA|infoA|ˆresultA 

|requestB|infoB|ˆresultB} 

//message without ˆ is a request. 

//message with ˆ in front is a reply. 

//all messages in communications 

//requests and info are sent by client 

//results are sent by server 

 

 
server = process p: +match{ //process server loop select{ 

||p.requestA; p.infoA; p.resultA; //serviceA 

||p.requestB; p.infoB; p.resultB;} //serviceB 

} 

 
client = process e: -match{ loop case{ 

||e.requestA; e.infoA; e.resultA; //serviceA 

||e.requestB; e.infoB; e.resultB;} //serviceB 

} 

 
//encapsulate processes 

Main = cell{m: Channel match; server(m); client(m);} 
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Illustration of Step 3: Abstract Communications 

from Implementation and Analyze Failures of 

Communications 

Since the interest in this thesis is in analyzing the behaviors of the system based on failures, an abstraction is 

created for extracting the code pertaining to generate communications with failures. The aim of this step is to use 

Galois connection to abstract processes and communications from the implementation, and analyze processes and 

communications with failures in Erasmus. 

 

Step 3.a.1: Abstract the Implementation of 

Scenario 1 

 

According to the abstraction rules in Chapter 3, the abstraction of implementation contains loops, deterministic 

choices, nondeterministic choices, sending and receiving messages through ports. The abstraction of the 

implementation of scenario 1 is provided as follows. 

 

server = 

loop{select{ 

p.requestA; p.infoA; p.resultA; 

|p.requestB; p.infoB; p.resultB; 

|p.requestC; p.infoC; p.resultC} 

} 

 

 
client = 

loop{case{ 

e.requestA; e.infoA; e.resultA; 

|e.requestB; e.infoB; e.resultB; 

|e.requestC; e.infoC; e.resultC} 

} 
 

In the abstraction of the implementation, loop can be defined by recursion; select together with | represents deterministic 

choices; case together with | represents nondeterministic choices; the notation port.message(for example p.requestA) 

represents message(requestA) that occurs on port(p); and the symbol “;” is the delimiter to indicate the “occurs before” 
relation between messages. 

In this scenario, implementation is considered as concrete domain, and abstraction is considered as abstract 
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domain. The relationships “execute before or simultaneously” between statements in abstraction are maintained in 

implementation, and vice versa. The details of mappings for this scenario are shown in Fig. 5.3: 

 

Step 3.a.2: Abstract the Implementation of 

Scenario 2 

 
According to the abstraction rules in Chapter 3, the abstraction of implementation contains loops, deterministic 

choices, nondeterministic choices, sending and receiving messages through ports. The abstraction of the 

implementation of scenario 2 is provided as follows. 

server = 

loop{ 

p.requestA; p.infoA; p.resultA 

} 

 
client = 

loop{ 

e.requestA; e.infoA; e.resultA 

} 

 
In this scenario, implementation is considered as concrete domain, and abstraction is considered as abstract 

domain. The relationships “execute before or simultaneously” between statements in abstraction are maintained in 

implementation, and vice versa. The details of mappings for this scenario are shown in Fig. 5.4: 
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Implementation 

(concrete domain) 

match = protocol { requestA|infoA|^resultA 
|requestB|infoB|^resultB 
|requestC|infoC|^resultC} 
//all messages in communications 
//requests and info are sent by client 
//results are sent by server 
 

server = process p: +match{ //process server 

loop select{ 

||p.requestA; p.infoA; p.resultA; //serviceA 
||p.requestB; p.infoB; p.resultB;  //serviceB 
||p.requestC; p.infoC; p.resultC;} //serviceC 
} 
 

client = process e: -match{ //process client loop 
case{ 

||e.requestA; e.infoA; e.resultA; //serviceA 
||e.requestB; e.infoB; e.resultB; //serviceB 
||e.requestC; e.infoC; e.resultC;} //serviceC 

Abstraction (abstract 

domain) 

server = loop{select{ 
p.requestA; p.infoA; p.resultA; 
|p.requestB; p.infoB; p.resultB; 
|p.requestC; p.infoC; p.resultC} 
} 

 
client = 
loop{case{ 
e.requestA; e.infoA; e.resultA; 
|e.requestB; e.infoB; e.resultB; 
|e.requestC; e.infoC; e.resultC} 
}

} 

 

//encapsulate processes 

Main = cell{ m: Channel match; server(m); client(m); } 
 
 
 
 

Figure 5.3: Mappings Between Implementation and Abstraction of Scenario 1 of the Client/Server Example
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Implementation (concrete 
domain) 

Abstraction (abstract 
domain)

 

 
 

 

 

Figure 5.4: Mappings Between Implementation and Abstraction of Scenario 2 of the Client/Server Example

 

match = protocol {requestA |infoA |^resultA} 
//all messages in communications 
//requests and info are sent by client 
//results are sent by server 

server = 
loop{ 

p.requestA; p.infoA; 
p.resultA 

} 
server = process p: +match{ //process server 

loop{ 
p.requestA; p.infoA; p.resultA; } 

//serviceA 
} 

client = 
loop{ 

e.requestA; e.infoA; 
e.resultA 

} 

client = process e: -match{ //process client 
loop{ 

e.requestA; e.infoA; e.resultA; } //serviceA 
} 

 
//encapsulate processes 
Main = cell{m: Channel match; server(m); client(m);} 
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Step 3.a.3: Abstract the Implementation of 

Scenario 3 

 
According to the abstraction rules in Chapter 3, the abstraction of implementation contains loops, deterministic 

choices, nondeterministic choices, sending and receiving messages through ports. The abstraction of the 

implementation of scenario 3 is provided as follows. 

 

server = 

loop{select{ 

p.requestA; p.infoA; p.resultA 

|p.requestB; p.infoB; p.resultB } 

} 

 

 
client = 

loop{case{ 

e.requestA; e.infoA; e.resultA 

|e.requestB; e.infoB; e.resultB } 

} 

 
In this scenario, implementation is considered as concrete domain, and abstraction is considered as abstract 

domain. The relationships “execute before or simultaneously” between statements in abstraction are maintained in 

implementation, and vice versa. The details of mappings for this scenario are shown in Fig. 5.5: 

 

Step 3.b: Generate and Analyze Failures 

 

A process in Erasmus usually has one or more ports for communications, which differs from the process in CSP. 

A set of all messages a port can send or receive is considered as the alphabetport. A set of messages of all ports of a 

process is deemed as the alphabetprocess={alphabetport1 ∪ . . . ∪ 

alphabetportn }. To model implementation, a process can be modeled by using ports, where a port 

can be modeled as (alphabetport, failuresport). 

Although the syntax of Erasmus is different from CSP, the semantics of Erasmus is analogous to CSP. Some 

notions and rules that model failures in CSP can be also used to model failures in Erasmus with preserving the same 

syntax and semantics, which includes -, ∪  , ⟨⟩, H and Q. 
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Implementation (concrete 

domain) 

Abstraction (abstract 

domain)

 

 
 
 

 
Figure 5.5: Mappings Between Implementation and Abstraction of Scenario 3 of the Client/Server Example

  

 

match = protocol { requestA|infoA|^resultA 
|requestB|infoB|^resul

tB} 
//all messages in communications 
//requests and info are sent by client 
//results are sent by server 

server = 
loop{select{ 

p.requestA; p.infoA; 
p.resultA 

|p.requestB; p.infoB; 
p.resultB } 

server = process p: +match{ //process server 
loop select{ 

||p.requestA; p.infoA; p.resultA; 
//serviceA 

||p.requestB; p.infoB; p.resultB;} 
//serviceB 

client = 
loop{case{ 

e.requestA; e.infoA; 
e.resultA 

|e.requestB; e.infoB; 
e.resultB } 

client = process e: -match{ 
loop case{ 

||e.requestA; e.infoA; e.resultA; //serviceA 
||e.requestB; e.infoB; e.resultB;} //serviceB 

} 

 
//encapsulate processes 
Main = cell{m: Channel match; server(m); client(m);} 
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To generate and analyze the traces of processes in Erasmus, according to Chapter 3, the following rules are proposed 

in this research. 

(1). Let P be a process, let p be a port of P , and let m be the first message that will be sent/received through prot 

p. The message can be represented P.p.m. P.p.m is a simple statement. If port p is unique in the system, P.p.m can be 

abbreviated as p.m. The failures of port p of process P  for sending/receiving message m  are failures(P.p.m)  =  {(⟨⟩, 

X)|X  ⊆  (alphabet(p) −   m)}.  It means any event occurs on port p other than message m, p stops working. 

(2). Let C1 and C2 be two statements , and let C1 execute before C2. There is C1; C2, which 

is a compound statement with the failures failures(C1; C2) = {(s, X) | (s, X) ∈ failures(C1)} ∪ 

{(s-t, Y ) | s-
⟨C⟩ ∈ traces(C1)∧  (t, Y ) ∈ failures(C2)}. It means that the failures failures(C1; C2) 

become failures(C1) first, as C1 executes before C2. After C1 accomplishing its execution with 

trace s successfully, the failures failures(C1; C2) depend on failures(C2). 

(3). Let C be a statement iterating n times in a loop, and let Ci represent the ith iteration of a loop of C. There is 

loop{C} = {C1; C2 . . . Cn−1; Cn}, which is a compound statement with 

the  failures  failures(loop{C})  =  {(s, X)  | (s, X)  ∈ failures(C)} ∪    {(s1-s, X)  | s1-
⟨C⟩   ∈ 

traces(C) ∧   (s, X)  ∈ failures(C)} ∪    . . . ∪    {(s1-s2- . . . -sn−1-sn, X)|si-
⟨C⟩  ∈ traces(C) ∧ 

1 ≤ i ≤ n − 1 ∧ (s, X) ∈ (failures(C))}. It means that if C iterates once, failures(loop{C}) become failures(C); if C iterates 

twice, and if the execution of the first iteration is accomplished successfully with trace s1, failures(loop{C}) depends 

on failures(C) in the second iteration; if C iterates n times, and if the execution from 1st iteration to (n − 1)th iteration 

successfully with trace 

s1-s2- . . . -sn−1, failures(loop{C}) depend on failures(C) in the nth iteration. 

(4). Let Ci be a statement where 1 ≤ i ≤ n, and let case represent nondeterministic choices. There is case{C1 |. . .  

|Cn}, which is a compound statement with failures( case{C1 |. . . |Cn })  = 

{(s, X )|(s, X )  ∈ failures(C1 ) ∪    . . . ∪    failures(Cn )}.  It means that failures(case{C1 |. . . |Cn }) 

depends on one of failures(Ci) where 1 ≤ i ≤ n. 

(5). Let Ci be a statement where 1 ≤ i ≤ n, and let select represent deterministic choices. There is select {C1 |. . .  

|Cn}, which is a compound statement with the failures failures(itselect{ C1|. . . |Cn}) = {(s, X)|(s = ⟨⟩ ∧   (s, X) ∈ 

failures(C1) ∩  . . . ∩  failures(Cn)) ∨   (s ⟨⟩ ∧   (s, X) ∈ failures(C1) ∪ . . . ∪ 

failures(Cn))}. It means that if statements Ci wait for the occurrence of the first message, failures(select{C1|. . . |Cn}) 

would become failures(C1) ∩  . . . ∩  failures(Cn). When the trace s occurs, it indicates one of Ci  executes, so 

failures(select{C1|. . . |Cn}) would become failures(C1) ∪ . . . ∪ failures(Cn). 

(6). Let C1 be a statement from a process, let C2 be a statement from another process, and let C1 and C2 be able 

to communicate with each other. There is C1 ǁ C2, which is a compound statement with failures(C1  ǁ  C2) = {(s, X ∪   Y 

)|((s, X) ∈ failures(C1) ∧   (s, Y ) ∈ failures(C2))}. In Erasmus, two ports can communicate only when the same message 

is sent by a port and received by another port simultaneously. If there is a failure of C1 ǁ C2, the failure would be from 

either failures(C1) or failures(C2). 
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Step 3.b.1: Generate and Analyze Failures of 

Scenario 1 

 
In this implementation scenario, process client has only one port e, and process server has only one port p. Thus, 

client can be represented as {alphabet(e), failures(e)}, and server can be represented as {alphabet(p), failures(p)}. 

As we are interested in communications between processes, in the abstraction of implementation 

of Scenario 1, the failures of communications are generated and analyzed as follows: 

 
 

failures(client ǁ server ) = failures(e ǁ p) 
 

{{(⟨⟩, X) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB, requestC , infoC, 

resultC }}, 
 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA, requestB, infoB, resultB, requestC , infoC, resultC }}, 

{(⟨requestB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, resultB, requestC , infoC, 

resultC }}, 
 

{(⟨requestC ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB, requestC , 

resultC }}, 
 

{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA, requestB, infoB, resultB, requestC, infoC, resultC }}, 
 

{(⟨requestB, infoB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, requestC , 

infoC, resultC }}, 
 

{(⟨requestC , infoC ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, itresultB, requestC 

, infoC }}, 
 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB, requestC , infoC, resultC }}, 

{(⟨requestB, infoB, resultB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB, 

requestC , infoC, resultC }}, 
 

{(⟨requestC , infoC, resultC ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB, 

requestC , infoC, resultC }}, 
 

. . . } 

 

In this scenario, three services, serviceA,serviceB and serviceC, can be requested by client and offered by server. For 

each type of service, the communications between processes follow the sequence of events request, info and service. 
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Step 3.b.2: Generate and Analyze Failures of 

Scenario 2 

 
In this implementation scenario, process client has only one port e, and process server has only one port p. Thus, 

client can be represented as {alphabet(e), failures(e)}, and server can be represented as {alphabet(p), failures(p)}. 

As we are interested in communications between processes, in the abstraction of implementation 

of Scenario 2, the failures of communications are generated and analyzed as follows: 

 
 

failures(client ǁ server ) = failures(e ǁ p) 
 

{{(⟨⟩, X) | X  ⊆ {requestA, infoA, resultA 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA}},{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA}}, 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {infoA, resultA}}, 

. . . } 

 
 

In this scenario, only one service, serviceA, can be requested by client and offered by server. The communications 

between processes follow the sequence of events requestA, infoA and serviceA. 

 

Step 3.b.3: Generate and Analyze Failures of 

Scenario 3 

 
In this implementation scenario, process client has only one port e, and process server has only one port p. Thus, 

client can be represented as {alphabet(e), failures(e)}, and server can be represented as {alphabet(p), failures(p)}. 

As we are interested in communications between processes, in the abstraction of implementation 

of Scenario 3, the failures of communications are generated and analyzed as follows: 

 
 

failures(client ǁ server ) = failures(e ǁ p) 
 

{{(⟨⟩, X) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestA⟩, X ) | X  ⊆ {requestA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, resultB }}, 
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{(⟨requestA, infoA⟩, X ) | X  ⊆ {requestA, infoA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB }}, 

{(⟨requestA, infoA, resultA⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

{(⟨requestB, infoB, resultB ⟩, X ) | X  ⊆ {requestA, infoA, resultA, requestB, infoB, resultB }}, 

. . . } 

 
 

In this scenario, two services, serviceA and serviceB, can be requested by client and offered by server. For each type 

of service, the communications between processes follow the sequence of events request, info and service. 

Illustration of Step 4: Build Categorical Models 

of Failures from Design 

 
The aim of this step is to construct categories for modeling progress of communications in the design. The progress 

of communications can be indicated by failures. In Chapter 3, the categories of traces in proposition 3 is provided as 

follows. 

• Category of Failures: Each object is of the form failures to indicate a process. A Morphism failuresa →  failuresb 

means the process with the failures from trace ⟨⟩ to the trace a evolves to the process with the failures from trace 

⟨⟩ to the trace b, where failuresa ⊆ failuresb. 

Proof of constructing category of failures is provided in Chapter 3. 

 
Proposition 6. DFailures1 is a category. It captures the designed behaviors of the system based on failures extracted 

from the design in section 5.4.1. In DFailures, each object represents failures of communications in the system 

designed; each morphism models the subset relationship between failures denoted by ⊆ to indicate the progress of the 

communications; and each identity represents the subset relationship to itself. 

Fig. 5.6 illustrates the DFailures1 category. 
 
 

  

Category:DFailures1 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 
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Figure 5.6: Category of Failures from the Design 

 

 
Proof. 

Objects: Each object is the failures of client ǁ server in design. failures⟨event1 ...event2 ⟩ repre- 

sents all the failures from trace ⟨⟩ to trace ⟨event1 . . . event2 ⟩. For example, failures⟨⟩  = {(⟨⟩, X) |⟨⟩ ∈ traces(client  ǁ server 

) ∧   X  ∈ refusals(client  ǁ server/⟨⟩)} is an object, failures⟨requestA⟩ = 

{{(⟨⟩, X) | ⟨⟩ ∈ traces(client  ǁ server ) ∧  X  ∈ refusals(client  ǁ server/⟨⟩)}, {(⟨requestA⟩, X ) | 

⟨requestA⟩  ∈ traces(client  ǁ  server ) ∧   X  ∈ refusals(client  ǁ  server/⟨requestA⟩)}} is an object, and failures⟨requestA,infoA⟩    

=   {{(⟨⟩, X)   | ⟨⟩   ∈ traces(client    ǁ   server )  ∧    X    ∈ refusals(client    ǁ server/⟨⟩)}, {(⟨requestA⟩, X )   | ⟨requestA⟩   ∈ 

traces(client   ǁ   server )  ∧    X    ∈ refusals(client   ǁ server/⟨requestA⟩)}, {(⟨requestA, infoA⟩, X )  | ⟨requestA, infoA⟩  ∈ 

traces(client  ǁ  server ) ∧    X  ∈ refusals(client  ǁ server/⟨requestA, infoA⟩)}} is an object as well. 

Morphisms: Let failuresx and failurey be objects. If failuresx ⊆ failuresy , there is a morphism 

failuresx →   failuresy . For example, failures⟨⟩ →    failures⟨requestA⟩ is a morphism. 

Identities: For each object, failuresm , there is an identity failuresm ⊆ failuresm , which in- dicates failuresm is a 

subset of itself. For example, failures⟨requestA⟩ → failures⟨requestA⟩ is an identity. 

Composition: Given any morphisms morphx,y : failuresx ⊆ failuresy and morphy,z : failuresy 

⊆  failuresz , with codomain of morphx,y = domain of morphy,z , there is failuresx ⊆  failuresy ⊆ 

failuresz . Thus, there is a composition morphism: morphy,z ◦ morphx,y : failuresx ⊆ failuresz . For example, 

failures⟨requestA⟩ → failures⟨requestA,infoA⟩ ◦ failures⟨⟩ → failures⟨requestA⟩ is a mor- phism, which is failures⟨⟩ ⊆ 

failures⟨requestA,infoA⟩ 

Associativity: For all morphisms morphw,x : failuresw ⊆ failuresx , morphx,y : failuresx ⊆ 

failuresy and morphy,z : failuresy ⊆ failuresz , with codomain of morphw,x = domain of morphx,y and codomain morphx,y 

= domain of morphy,z , there is failuresw ⊆ failuresx ⊆ failuresy ⊆ failuresz to represent the subset relationships between 

failures. Thus, there are morphy,z ◦(morphx,y ◦ morphw,x ) = morphy,z ◦ (failuresw ⊆ failuresy ) = failuresw ⊆ failuresz , 

and(morphy,z ◦ morphx,y ) 

◦ morphw,x = (failuresx ⊆ failuresz ) ◦ morphw,x = failuresw ⊆   failuresz . So, morphy,z ◦ (morphx,y 

◦ morphw,x ) = (morphy,z ◦ morphx,y ) ◦ morphw,x . For example, there is 
(failures

⟨requestA,infoA⟩ 
→ 

failures
⟨requestA,infoA,resultA⟩

◦failures
⟨requestA⟩  

→ failures
⟨requestA,infoA⟩

)◦ failures
⟨⟩ 

→ failures
⟨requestA⟩ 

= 

failures
⟨requestA,infoA⟩ 

→ failures
⟨requestA,infoA,resultA⟩ 

◦ (failures
 

⟨requestA⟩ 
→ failures

⟨requestA,infoA⟩ 
◦ failures

⟨⟩ 
→   failures

⟨requestA⟩
).
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Illustration of Step 5: Build Categorical Models 

of Failures from Abstraction of 

Implementation 

The aim of this step is to construct categories for communications in the abstraction of im- plementation. The 

progress of communications can be indicated by failures. In Chapter 3, the categories of traces in proposition 3 is 

provided as follows. 

 

• Category of Failures: Each object is of the form failures to indicate a process. A Morphism failuresa →  failuresb 

means the process with the failures from trace ⟨⟩ to the trace a evolves to the process with the failures from trace 

⟨⟩ to the trace b, where failuresa ⊆ failuresb. 

Proof of constructing category of failures is provided in Chapter 3. 

 
 

Step 5.1: Build Categorical Models of Failures from Abstraction of Implementation of Sce- nario 1 

Proposition 7. IFailures1 is a category. It captures the behaviors of the system based on failures of communications 

extracted from the abstraction of implementation of scenario 1 in section 5.4.3. In IFailures1, each object represents 

the failures of communications; each morphism models the subset relationship between failures denoted by ⊆ to 

indicate the progress of communications; and each identity represents the subset relationship to itself. 

Fig. 5.7 illustrates the IFailures1 category. 

 
Proof. 

Objects: Each object is failures of client ǁ server in scenario 1. failures⟨event1 ...event2 ⟩ repre- 

sents all the failures from trace ⟨⟩ to trace ⟨event1 . . . event2 ⟩. For example, failures⟨⟩  = {(⟨⟩, X) | 

⟨⟩ ∈ traces(client  ǁ server )∧  X  ∈ refusals(client  ǁ server/⟨⟩)} is an object, failures⟨requestC ⟩ = 

{{(⟨⟩, X) | ⟨⟩ ∈ traces(client  ǁ server )∧  X  ∈ refusals(client  ǁ server/⟨⟩)}, {(⟨requestC ⟩, X ) | 

⟨requestC ⟩  ∈ traces(client  ǁ  server ) ∧   X  ∈ refusals(client  ǁ  server/⟨requestC ⟩)}} is an ob- ject, failures⟨requestC,infoC ⟩    

=   {{(⟨⟩,  X)   | ⟨⟩   ∈ traces(client    ǁ   server )  ∧    X    ∈ refusals(client    ǁ server/⟨⟩)}, {(⟨requestC ⟩, X )  | ⟨requestC ⟩  ∈ 

traces(client  ǁ  server ) ∧   X  ∈ refusals(client  ǁ
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Figure 5.7: Category of Failures from the Abstraction of Implementation of Scenario 1 

 
server/⟨requestC ⟩)}, {(⟨requestC , infoC ⟩, X ) | ⟨requestC , infoC ⟩ ∈ traces(client  ǁ server ) ∧    X  ∈ 

refusals(client  ǁ server/⟨requestC , infoC ⟩)}} is an object as well. 

Morphisms: Let failuresx and failurey be objects. If failuresx ⊆ failuresy , there is a morphism 

failuresx →   failuresy . For example, failures⟨⟩ →    failures⟨requestC ⟩ is a morphism. 

Identities: For each object, failuresm , there is an identity failuresm ⊆ failuresm , which in- dicates failuresm is a 

subset of itself. For example, failures⟨requestC ⟩ → failures⟨requestC ⟩ is an identity morphism. 

Composition: Given any morphisms morphx,y : failuresx ⊆ failuresy and morphy,z : failuresy 

⊆  failuresz , with codomain of morphx,y = domain of morphy,z , there is failuresx ⊆  failuresy ⊆ 

failuresz . Thus, there is a composition morphism: morphy,z ◦ morphx,y : failuresx ⊆ failuresz . For example, 

failures⟨requestC ⟩ →   failures⟨requestC,infoC ⟩ ◦   failures⟨⟩ →    failures⟨requestC ⟩ is a mor- phism, which is failures⟨⟩ ⊆ 

failures⟨requestC,infoC ⟩ 

Associativity: For all morphisms morphw,x : failuresw ⊆ failuresx , morphx,y : failuresx ⊆ 

failuresy and morphy,z : failuresy ⊆ failuresz , with codomain of morphw,x = domain of morphx,y and codomain morphx,y 

= domain of morphy,z , there is failuresw ⊆ failuresx ⊆ failuresy ⊆ failuresz to represent the subset relationships between 

failures. Thus, there are morphy,z ◦(morphx,y ◦ morphw,x ) = morphy,z ◦ (failuresw ⊆ failuresy ) = failuresw ⊆ failuresz , 

and(morphy,z ◦ 

morphx,y ) ◦ morphw,x =  (failuresx  ⊆  failuresz ) ◦ morphw,x  =  failuresw  ⊆  failuresz .  So, 

morphy,z ◦ (morphx,y ◦ morphw,x ) = (morphy,z ◦ morphx,y ) ◦ morphw,x . For example, there is

(failures →   failures ◦ failures →  
failures
 

)
⟨requestC,infoC ⟩ ⟨requestC,infoC,resultC ⟩ ⟨requestC ⟩ ⟨requestC,infoC ⟩

  

Category:IFailures1 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

Failures<requestC> Failures<requestC, infoC> Failures<requestC, infoC, resultC> 
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◦ failures →   failures = failures →   failures ◦ ( failures

⟨⟩ ⟨requestC ⟩ ⟨requestC,infoC ⟩ ⟨requestC,infoC,resultC ⟩

⟨requestC ⟩ → failures⟨requestC,infoC ⟩ ◦ failures 
⟨⟩  

→ failures
⟨  requestC ⟩

).
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Step 5.2: Build Categorical Models of Failures 

from Abstraction of Implementation of Sce- 

nario 2 

Proposition 8. IFailures2 is a category. It captures the behaviors of the system based on failures of communications 

extracted from the abstraction of implementation of scenario 2 in section 5.4.3. In IFailures2, each object represents 

the failures of communications; each morphism models the subset relationship between failures denoted by ⊆ to 

indicate the progress of communications; and each identity represents the subset relationship to itself. 

Fig. 5.8 illustrates the IFailures2 category. 
 

 

 

 

Figure 5.8: Category of Failures from the Abstraction of Implementation of Scenario 2 

 

 
Proof. 

Objects: Each object is failures of client ǁ server in scenario 2. failures⟨event1 ...event2 ⟩ repre- 

sents all the failures from trace ⟨⟩ to trace ⟨event1 . . . event2 ⟩. For example, failures⟨⟩  = {(⟨⟩, X) | 

⟨⟩ ∈ traces(client  ǁ server ) ∧   X  ∈ refusals(client  ǁ server/⟨⟩)} is an object, failures⟨requestA⟩ = 

{{(⟨⟩, X) | ⟨⟩ ∈ traces(client  ǁ server ) ∧  X  ∈ refusals(client  ǁ server/⟨⟩)}, {(⟨requestA⟩, X ) | 

⟨requestA⟩ ∈ traces(client  ǁ server ) ∧   X  ∈ refusals(client  ǁ server/⟨requestA⟩)}} is an object, 

and  failures⟨requestA,infoA⟩   =   {{(⟨⟩, X)   | ⟨⟩  ∈ traces(client   ǁ  server )  ∧    X   ∈ refusals(client   ǁ server/⟨⟩)}, {(⟨requestA⟩, 

X )   | ⟨requestA⟩   ∈ traces(client   ǁ   server )  ∧    X    ∈ refusals(client   ǁ server/⟨requestA⟩)}, {(⟨requestA, infoA⟩, X )  | 

⟨requestA, infoA⟩  ∈ traces(client  ǁ  server ) ∧    X  ∈ refusals(client  ǁ server/⟨requestA, infoA⟩)}} is an object as well. 

Morphisms: Let failuresx and failurey be objects. If failuresx ⊆ failuresy , there is a morphism 

failuresx →   failuresy . For example, failures⟨⟩ →    failures⟨requestA⟩ is a morphism. 

  

Category:IFailures2 

Failures<> Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 
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Identities: For each object, failuresm , there is an identity failuresm ⊆ failuresm , which indi- cates failuresm is a 

subset of itself. For example, failures⟨requestA⟩ → failures⟨requestA⟩ is an identity morphism. 

Composition: Given any morphisms morphx,y : failuresx ⊆ failuresy and morphy,z : failuresy 

⊆  failuresz , with codomain of morphx,y = domain of morphy,z , there is failuresx ⊆  failuresy ⊆ 

failuresz . Thus, there is a composition morphism: morphy,z ◦ morphx,y : failuresx ⊆ failuresz . For example, 

failures⟨requestA⟩ → failures⟨requestA,infoA⟩ ◦ failures⟨⟩ → failures⟨requestA⟩ is a mor- phism, which is failures⟨⟩ ⊆ 

failures⟨requestA,infoA⟩ 

Associativity: For all morphisms morphw,x : failuresw ⊆ failuresx , morphx,y : failuresx ⊆ 

failuresy and morphy,z : failuresy ⊆   failuresz , with codomain of morphw,x = domain of morphx,y and codomain morphx,y 

= domain of morphy,z , there is failuresw ⊆ failuresx ⊆ failuresy ⊆ failuresz to represent the subset relationships between 

failures. Thus, there are morphy,z ◦(morphx,y ◦ morphw,x ) = morphy,z ◦ (failuresw ⊆ failuresy ) = failuresw ⊆ failuresz , 

and(morphy,z ◦ morphx,y ) 

◦ morphw,x = (failuresx ⊆ failuresz ) ◦ morphw,x =  failuresw ⊆  failuresz . So, morphy,z ◦  (morphx,y 

◦ morphw,x ) = (morphy,z ◦ morphx,y ) ◦ morphw,x . For example, there is 
(failures

⟨requestA,infoA⟩ 
→

 

failures
⟨requestA,infoA,resultA⟩

◦failures
⟨requestA⟩   

→ failures
⟨requestA,infoA⟩

)
 

◦ 
failures

⟨⟩ 
→ failures

⟨requestA⟩ 
= failures

⟨requestA,infoA⟩ 
→ failures

⟨requestA,infoA,resultA⟩ 
◦ (failures

 

⟨requestA⟩ 
→ failures

⟨requestA,infoA⟩ 
◦ failures

⟨⟩ 
→   failures

⟨requestA⟩
). 

 

Step 5.3: Build Categorical Models of Failures from 

Abstraction of Implementation of Sce- nario 3 
Proposition 9. IFailures3 is a category. It captures the behaviors of the system based on failures of communications 

extracted from the abstraction of implementation of scenario 3 in section 5.4.3. In IFailures3, each object represents 

the failures of communications; each morphism models the subset relationship between failures denoted by ⊆ to 

indicate the progress of communications; and each identity represents the subset relationship to itself. 

Fig. 5.9 illustrates the IFailures3 category. 
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Figure 5.9: Category of Failures from the Abstraction of Implementation of Scenario 3 

 

 
Proof. 

Objects: Each object is failures of client ǁ server in scenario 2. failures⟨event1 ...event2 ⟩ repre- 

sents all the failures from trace ⟨⟩ to trace ⟨event1 . . . event2 ⟩. For example, failures⟨⟩  = {(⟨⟩, X) | 

⟨⟩ ∈ traces(client  ǁ server ) ∧   X  ∈ refusals(client  ǁ server/⟨⟩)} is an object, failures⟨requestA⟩ = 

{{(⟨⟩, X) | ⟨⟩ ∈ traces(client  ǁ server ) ∧  X  ∈ refusals(client  ǁ server/⟨⟩)}, {(⟨requestA⟩, X ) | 

⟨requestA⟩  ∈ traces(client  ǁ  server ) ∧   X  ∈ refusals(client  ǁ  server/⟨requestA⟩)}} is an object, and failures⟨requestA,infoA⟩    

=   {{(⟨⟩,  X)   | ⟨⟩   ∈ traces(client    ǁ   server )  ∧    X    ∈ refusals(client    ǁ server/⟨⟩)}, {(⟨requestA⟩, X )   | ⟨requestA⟩   ∈ 

traces(client   ǁ  server )  ∧    X    ∈ refusals(client   ǁ server/⟨requestA⟩)}, {(⟨requestA, infoA⟩, X )  | ⟨requestA, infoA⟩  ∈ 

traces(client  ǁ  server ) ∧    X  ∈ refusals(client  ǁ server/⟨requestA, infoA⟩)}} is an object as well. 

Morphisms: Let failuresx and failurey be objects. If failuresx ⊆ failuresy , there is a morphism 

failuresx →   failuresy . For example, failures⟨⟩ →    failures⟨ requestA⟩ is a morphism. 

Identities: For each object, failuresm , there is an identity failuresm ⊆ failuresm , which indi- cates failuresm is a 

subset of itself. For example, failures⟨ requestA⟩ → failures⟨ requestA⟩ is an identity morphism. 

Composition: Given any morphisms morphx,y : failuresx ⊆ failuresy and morphy,z : failuresy 

⊆ failuresz , with codomain of morphx,y = domain of morphy,z , there is failuresx ⊆ failuresy ⊆ 

failuresz . Thus, there is a composition morphism: morphy,z ◦ morphx,y : failuresx ⊆ failuresz . For

example, failures 
⟨requestA⟩ 

→
 

failures
⟨requestA,infoA⟩ 

◦ 

failures
⟨⟩ 

failures⟨requestA⟩ is a mor-

phism, which is failures   ⊆ failures → 
⟨⟩ ⟨requestA,infoA⟩ 

Associativity: For all morphisms morphw,x : failuresw ⊆ failuresx , morphx,y : failuresx ⊆ failuresy and morphy,z : 

  

Category:IFailures3 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 
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failuresy ⊆   failuresz , with codomain of morphw,x = domain of morphx,y and codomain morphx,y = domain of morphy,z , 

there is failuresw ⊆ failuresx ⊆ failuresy ⊆ failuresz to represent the subset relationships between failures. Thus, there are 

morphy,z ◦(morphx,y ◦ morphw,x ) = morphy,z ◦ (failuresw ⊆ failuresy ) = failuresw ⊆ failuresz , and(morphy,z ◦ morphx,y ) 

◦ morphw,x = (failuresx ⊆ failuresz ) ◦  morphw,x =  failuresw ⊆  failuresz . So, morphy,z ◦ (morphx,y ◦ 

morphw,x ) = (morphy,z ◦ morphx,y ) ◦ morphw,x . For example, there is

(failures →   failures ◦ failures →  
failures
 

)
⟨requestA,infoA⟩ ⟨requestA,infoA,resultA⟩ ⟨requestA⟩ ⟨requestA,infoA⟩

◦ failures →   failures = failures →   failures ◦ ( failures

⟨⟩ ⟨requestA⟩ ⟨requestA,infoA⟩ ⟨requestA,infoA,resultA⟩ 

⟨requestA⟩ → failures ⟨requestA,infoA⟩ ◦ failures ⟨⟩→ failures ⟨requestA⟩). 
 

 

Illustration of Step 6: Construct Functors from 

Categories of Design to Cate- gories of 

Abstraction of Implementation 

The aim of this step is to verify consistency between design and implementation by construct- ing categories and 

functors. According to Chapter 3, consistency of communications with failures between the design and the 

implementation is defined as follows: 

Consistency of Communications with Failures: Given a sequence of communications with failures in the design 

to represent the progress of communications, DFailures : failures⟨⟩ → 
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failures⟨devent1 ⟩ → · · · → failures⟨devent1 ,...,deventn ⟩, and a sequence of communications with fail- ures in the 

implementation to represent the progress of communications, IFailures : failures⟨⟩ → failures⟨ievent1 ⟩ →  · · · 

→  failures⟨ievent1 ,...,ieventn ⟩. If there exists a mapping from DFailures to IFailures with structure 

preserved between failures, which can map each trace of failures⟨devent1 ,..., deventi ⟩ to the same trace of failures⟨ievent1 

,...,ieventi ⟩ with the refusals of the trace of failures⟨devent1 , 

...,deventi ⟩ being a subset of the refusals of the corresponding trace of failures⟨ievent1 ,...,ieventi ⟩, and 

can map failures
⟨devent1  ,...,deventi  ⟩  

→ failures
⟨devent1  ,...,deventi+1  ⟩  

to failures
⟨ievent1  ,...,ieventi  ⟩  

→ failures ⟨ievent1 ,...,ieventi+1 

⟩, then IFailures is consistent with DFailures. If all sequences in the design have corresponding mapping sequences 

in the implementation, the communications in the 

implementation are consistent with the communications in the design. 

To verify consistency of communications with failures between design and implementation, the construction of a 

functor can be used [55, 56, 57, 58]. If there exists a functor that maps the category of failures from design to the 

category of failures from implementation, the implementation is con- sistent with the design. Otherwise, the 

implementation is inconsistent with the design. According to Chapter 3, the functor can be constructed with the 

following approach. 

• For each object, ocd, in design, there must be a corresponding object, oci, in implementation, such that ocd can 

be mapped to oci when each trace in ocd has the same trace in oci, and the corresponding refusals in ocd are a 

subset of the corresponding refusals in oci. 

• For each morphism md : ocd1 → ocd2 in design, there must be a corresponding morphism mi : oci1 → oci2 in 

implementation, such that md can be mapped to mi when ocd1 and ocd2 can be mapped to oci1 and oci2 

respectively. 

 

Step 6.1: Construct Functors from Categories of 

Design to Categories of Abstraction of Im- 

plementation of Scenario 1 

Based on the analysis of categories DFailures1 and IFailures1, the consistency between the design and the 
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implementation is verified by constructing a functor DfToIf1: DFailures1 → IFail- ures1. This functor maps objects 

and morphisms of DFailures1 to the corresponding objects and morphisms of IFailures1 as follows. 

• Objects Mapping: let ocd be an object of DFailures1, and let oca be an object of IFailures1. As ocd and oca 

represent communications with failures, each element in failures is a pair with the form (trace, refusals ).  When 

each element {(td, Ed)|td is a trace ∧   Ed is refusals} in ocd  has a corresponding element {(ta, Ea)|ta   is a trace ∧   

Ea is refusals} with td  =  ta and Ed ⊆ Ea, there exists a mapping from ocd to oca. This indicates that all the com- 

munications between client and server in design are captured in implementation. For ex- 

ample, failures⟨requestA⟩ in DFailures1 in the design represents communications with fail- ures  of  ⟨⟩  and  failures  

of  ⟨requestA⟩,  and  there  exists  failures⟨requestA⟩  in  IFailures1  in  the implementation as well. Thus, there is 

a mapping from failures⟨requestA⟩ in DFailures1 to failures⟨requestA⟩ in IFailures1. 

• Morphisms Mapping: For every morphism mcd : ocd1 → ocd2 of DFailures1, there must exist one corresponding 

morphism mca : oca1 → oca2 of IFailures1, such that there exists a mapping from mcd to mca when ocd1 and 

ocd2 can be mapped to oca1 and oca2 respectively. These mappings indicate that all the progresses of 

communications in design are captured in implementation. For example, there exist a mapping from failures⟨⟩ 

→ failures⟨requestA⟩ in DFailures1 to failures⟨⟩ → failures⟨requestA⟩ in IFailures1 

• Identities Mapping: By following the objects mapping and morphisms mapping, identity mapping is preserved 

from DFailures1 to IFailures1. 

• Composition Morphisms Mapping: By following the objects mapping and morphisms map- ping, compositions 

of morphisms mapping are preserved from DFailures1 to IFailures1. 

Fig. 5.10 shows that DfToIf1: DFailures1 → IFailures1 is a functor. 

The successful construction of the functor DfToIf1 indicates that the communications between client and server 

in the implementation of scenario 1 and the communications between client and server in the design are consistent. 

Though scenario 1 implemented one more service, serviceC, which is not specified in the design, all services, serviceA 

and serviceB in the design are captured in the implementation.
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Figure 5.10: A Functor from the Category of Failures in Design to the Category of Failures in the Abstraction of 

Implementation of Scenario 1 

 

Step 6.2: Construct Functors from Categories of 

Design to Categories of Abstraction of Im- 

plementation of Scenario 2 

The implementation of scenario 2 just provides serviceA. There is no serviceB in the implemen- tation. According 

to the definition of consistency of communications with failures and the approach of constructing functors, for the 

categories DFailures1 and IFailures2, we cannot construct a func- tor from DFailures1 to IFailures2. All the objects 

related to the serviceB in DFailures1 cannot be mapped to any object in IFailures2. 

Fig. 5.11 shows that we can not construct such a functor from DFailures1 to IFailures2.

D
f

ToIf1 

 

 

 

Category:DFailures1 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

Category:IFailures1 Failures<requestC> Failures<requestC, infoC> Failures<requestC, infoC, resultC> 
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Figure 5.11: No Functor from the Category of Failures in Design to the Category of Failures in the Abstraction of 

Implementation of Scenario 2 

 
Failing to construct the functor indicates that not all the communications in the design are cap- tured in the 

implementation. For this scenario, communications related to serviceB is not imple- mented. Namely, the 

communications between client and server in the design are inconsistent with the communications between client and 

server in the implementation. 

 

Step 6.3: Construct Functors from Categories of 

Design to Categories of Abstraction of Im- 

plementation of Scenario 3 

Scenario 3 implemented all the services in the design. Based on the analysis of categories DFailures1 and 

IFailures3, the consistency between the design and the implementation is verified by constructing a functor DfToIf3: 

DFailures1 → IFailures3. This functor maps objects and morphisms of DFailures1 to the corresponding objects and 

morphisms of IFailures3 as follows. 

• Objects Mapping: let ocd be an object of DFailures1, and let oca be an object of IFailures3. As ocd and oca 

represent communications with failures, each element in failures is a pair with the form (trace, refusals ).  When 

each element {(td, Ed)|td is a trace ∧   Ed is refusals} 

in ocd  has a corresponding element {(ta, Ea)|ta   is a trace ∧   Ea is refusals} with td  =  ta and Ed ⊆ Ea, there exists 

a mapping from ocd to oca. This indicates that all the com- munications between client and server in design are 

  

Category:DFailures1 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

  

Category:IFailures2 

Failures<> Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 
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captured in implementation. For ex- ample, failures⟨requestA⟩ in DFailures1 in the design represents 

communications with fail- ures of ⟨⟩  and failures of ⟨requestA⟩, and there exists failures⟨requestA⟩  in IFailures3 in 

the 

implementation as well. Thus, there is a mapping from failures⟨requestA⟩ in DFailures1 to 

failures⟨requestA⟩ in IFailures3. 

 
• Morphisms Mapping: For every morphism mcd : ocd1 → ocd2 of DFailures1, there must exist one corresponding 

morphism mca : oca1 → oca2 of IFailures3, such that there exists a mapping from mcd to mca when ocd1 and 

ocd2 can be mapped to oca1 and oca2 respectively. These mappings indicate that all the progresses of 

communications in design are captured in implementation. For example, there exist a mapping from failures⟨⟩ 

→ failures⟨requestA⟩ in DFailures1 to failures⟨⟩ → failures⟨requestA⟩ in IFailures3 

• Identities Mapping: By following the objects mapping and morphisms mapping, identity mapping is preserved 

from DFailures1 to IFailures3. 

• Composition Morphisms Mapping: By following the objects mapping and morphisms map- ping, compositions 

of morphisms mapping are preserved from DFailures1 to IFailures3. 

Fig. 5.12 shows that DfToIf3: DFailures1 → IFailures3 is a functor. 

The successful construction of the functor DfToIf3 indicates that the communications between client and server 

in the implementation of scenario 3 and the communications between client and server in the design are consistent. 

 

Summary 

 
In this chapter, the categorical framework is used to verify consistency of communications with failures between 

design and implementation. This framework used failures, category theory and abstraction of implementation, and is 

illustrated by a running example with a design and three dif- ferent scenarios of implementation. In doing so, the 

design of processes communications is modeled
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Figure 5.12: A Functor from the Category of Failures in Design to the Category of Failures in the Abstraction of 

Implementation of Scenario 3 

 
and analyzed by CSP, three scenarios of implementation are created by Erasmus, communications with failures of 

three scenarios are analyzed based on abstraction, categories of communications with failures from the design and 

from three scenarios of implementation are created, and, by con- structing functors, the consistency of 

communications between the design and three scenarios of implementation is verified. 

In the next chapter, we introduce algorithms for the categorical framework to verify consistency of 

communications between design and implementation.

D
f

ToIf3 

 

 

 

Category:DFailures1 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

Failures<requestA> Failures<requestA, infoA> Failures<requestA, infoA, resultA> 

Failures<> 

Failures<requestB> Failures<requestB, infoB> Failures<requestB, infoB, resultB> 

Category:IFailures3 
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Chapter 6 

 

Algorithms for Verification with Failures 

 

Introduction 

 
To automate the verification of communications, several algorithms are developed for the cate- gorical framework 

in this chapter. As failures of a process consist of traces, algorithms developed for verification with failures can be 

used for verification with traces as well.   Section 6.2 briefs the contributions in developing algorithms. Section 6.3 

gives an overview of algorithms developed for the categorical framework. Section 6.4 introduces data structure and 

basic functions used for developing algorithms.   Section 6.5 provides algorithms for generating failures from 

abstraction of implementation in Erasmus. Section 6.6 and section 6.7 presents algorithms for constructing categories 

and functors respectively. Section 6.8 summarizes this chapter. 

 

Contributions 

 
Several contributions in developing algorithms are introduced as follows: 

 
• Basic data structures and functions are developed for algorithms used for verification. 

 
• Algorithms are developed for operations in Erasmus, such as sequential execution, recursion, nondeterministic 

choice, deterministic choice, and parallel execution. 

• Algorithms are developed for constructing categories from failures.
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Step 1. 
Design 

Concurrent 
Systems in CSP 

Step 6. 
Construct Functors from 
Categories of Design to 

Categories of Abstraction 

of Implementation by 
Using Algorithms 

 

 
Step 4. 

Build Categorical 

Models from Design by 
Using Algorithms 

 

• Algorithms are developed for constructing functors between categories. 

 
 

The Framework with Algorithms 

 
In Chapter 3, 4, and 5, we proposed the categorical framework and used it to model and analyze the consistency 

of communications with failures. For CSP, the tool named FDR is developed for generating failures of processes and 

communications [5]. For Erasmus, we proposed several rules to analyze and generate failures in Chapter 3. Also, we 

proposed several definitions and approaches to build categories and functors based on failures of processes and 

communications. In this section, algorithms are developed for Erasmus and categories used in the framework (See 

Fig. 6.1). 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Step 2. 

Implement the 

systems in Erasmus 

  

Step 3. 

Abstract Communications 

from Implementation and 

Analyze Communications 

by Using Algorithms 

  
Step 5. 

Build Categorical 

Models from 

Abstraction of 

Implementation by 

Using algorithms 

 

   

 

Figure 6.1: The Categorical Framework with Algorithms 

 
(1). In step 3, algorithms are developed for automatically generating failures of process com- munications from 

abstraction of implementation. These algorithms are used to achieve research objective OBJ3. 

(2). In step 4 and step 5, algorithms are developed for automatically generating categories from failures of process 

communications in design or abstraction of implementation. These algorithms are used to achieve research objective 

OBJ4 and objective OBJ5.
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(3). In step 6, algorithms are developed for automatically constructing functors from categories of design to 

categories of abstraction of implementation. These algorithms are used to achieve research objective OBJ6. 

In the following sections, the algorithms for the above mentioned steps are illustrated in detail. 

 

 

Data Structures and Basic Functions Used in 

Algorithms 

 
In this section, we introduce data structures and basic functions used in algorithms for the frame- 

work. 

 
 

Data Structures 

 
As we analyze failures and categories, several notions related to failures and categories are defined with the 

following data structures. 

• An Event is represented by a String. 

 
• An EventSet is a set of events. It is represented by a Set of String. 

 
• An Alphabet is a set of all events of a process. It is represented by a Set of String. 

 
• A Trace is a sequence of events. It is represented by a List of String. 

 
• A Refusal of a trace is a set that contains sets of events. It is represented by a Set of EventSet. 

 
• A Failure is a pair (Trace, Refusal) that contains a trace and a refusal of the trace. It is represented by a pair 

with the data structure of Trace and the data structure of Refusal. 

• The Failures is a set, and each element of the set is a failure. It is represented by a Set of 

Failure. 

 
• A Process is a pair (Alphabet, Failures) that contains an Alphabet and Failures to represent a process. It is 

represented by a pair with the data structure of Alphabet and the data structure of Failures. 
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• An Object is a pair (Data, Children) to represent a process. It consists of two parts: (1). Data contains the 

information of a process. It is represented by Failures of Process, (2). Children consists of a List of Objects 

which morphisms from the Object are connected to. 

• A Category is a category of failures. Each object in the category describes failures of a process. Each morphism 

between objects indicates an evolution from one process to another. Object may have other Objects as its 

Children. Always, there is an object Root to describe failures of the process with the empty trace. 

 
Basic Functions 

 
In this research, as we analyze failures, several functions related to failures are defined as fol- lows. 

 

• Boolean evtBelongsEvtSet (Event, EventSet) is a function. It takes two inputs, Event and 

EventSet, and then returns true if Event is in EventSet. Otherwise, it returns false. 

 
• Boolean evtSetBelongsRefusal (EventSet, Refusal) is a function. It takes two inputs, EventSet 

and Refusal, and then returns true if EventSet is in Refusal. Otherwise, it returns false. 

 
• Boolean compareSet (Set, Set) is a function. It takes two inputs, Set and Set, and then returns true if two Set are 

same. Otherwise, it returns false. 

• Boolean compareTrace (Trace, Trace) is a function. It takes two inputs, Trace and Trace, and then returns true 

if two Trace are the same. Otherwise, it returns false. 

• Boolean subSet (Set, Set) is a function. It takes two inputs, Set and Set, and then returns true if the first Set is a 

subset of the second Set. Otherwise, it returns false. 

• Boolean subTrace (Trace, Trace) is a function. It takes two inputs, Trace and Trace, and then returns true if 

the first Trace is a prefix of the second Trace. Otherwise, it returns false. 

• Trace addPrefixTrace (Trace, Trace) is a function. It takes two inputs, Trace and Trace, and then returns a new 

Trace with the first Trace followed by the second Trace. 

• Set powerSet (Set) is a function. It takes an input, Set, and then returns the power set of the 

Set. 

 
• Set evtSetFromRefusal (Refusal) is a function. It takes an input, Refusal, and then returns a 

Set of Events that contains all Events occurred in Refusal. 
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• Set setUnion (Set,Set) is a function. It takes two inputs, Set and Set, and then returns a Set 

that is the set union of the first Set and the second Set. 

 
• Set setIntersection (Set,Set) is a function. It takes two inputs, Set and Set, and then returns a 

Set that is the set intersection of the first Set and the second Set. 

 
• Set setDifference (Set,Set) is a function. It takes two inputs, Set and Set, and then returns a Set whose elements 

are in the first Set and the second Set, but not in the intersection of the first Set and the second Set. 

• Set of Traces findSuccessfulTraces (Process) is a function. It takes a process, and then returns a Set of Traces 

whose elements are successful traces in the process. 

 

Algorithms for Generating Failures from 

Abstraction of Imple- mentation 

In step 3 of the framework, failures are used to model and analyze processes and communica- tions. Several rules 

on failures are defined to describe the relationships between processes in Chap- ter 3. These rules include sequential 

execution failures(C1; C2), recursion failures(loop{C}), non- deterministic choice failures(case{C1|. . . |Cn}), 

deterministic choice failures(select{C1|. . . |Cn}), and parallel execution failures(C1 ǁ C2). In this section, we propose 

algorithms for the abovemen- tioned rules as follows. 

 
Sequential Execution 

 
Given two Erasmus statements C1 and C2, a sequence C1; C2 means the process behaves as C1 first, then behaves as 
C2 after C1 executed successfully. In chapter 3, the rule for calculating failures of C1; C2 is proposed as follows. 

 
 

failures(C1; C2) ={(s, X) | (s, X) ∈ failures(C1)} 
 

∪   {(s-t, X) | s-
⟨C⟩ ∈ traces(C1) ∧   (t, X) ∈ failures(C2)} 

 
Based on this rule, we propose the Algorithm 1 for sequential execution ; as follows. In Algo- rithm 1, as C1 and 

C2 may have different alphabets, the alphabet of C1; C2 is the set union of the alphabet of C1 and the alphabet of C2. 

For C1, the refusal of each failure needs to be updated, as C1 may refuse to execute some events from C2. For C2, 

the refusal of each failure needs to be updated, as C2 may refuse to execute some events from C1. After updating, the 

refusals of all failures with successful traces in C1 are replaced by using the refusal of the failure with ⟨⟩ trace in C2, 

then C1 is added into C1; C2. Subsequently, traces of all failures in C2 are updated by adding each successful trace 
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in C1 as their trace prefix. In the last, C2 is added into C1; C2 with removing the failure with ⟨⟩  trace in C2. The 

function findSuccessfulTraces is used to find all successful tracesin C1. 
 

Algorithm 1 sequentialExecution 

Input: Process C1, Process C2 

Output: Process R 

1: create an empty process R 

2: the alphabet of R ← setUnion (the alphabet of C1, the alphabet of C2) 

3: extend the refusal of each failure in failures of C1 by using the alphabet of C2 4: extend the refusal 

of each failure in failures of C2 by using the alphabet of C1 5: create a set of traces sucC1TraceSet 

← findSuccessfulTraces (C1) 

6: create a failure initC2Failure ← the failure with ⟨⟩ trace in Failures of C2 

7: for each trace sucC1Trace in sucC1TraceSet do 8:    for each failure 

c1Failure in Failures of C1 do 9: if Trace of c1Failure = 

sucC1Trace then 

10: Refusal of c1Failure ←   Refusal of initC2Failure 

11: end if 

12: end for 

13: end for 

14: Failures of R ← Failures of C1 

15: remove initC2Failure from Failures of C2 

16: for each trace sucC1Trace in sucC1TraceSet do 

17: for each failure c2Failure in Failures of C2 do 

18: trace c2Trace of c2Failure ← addPrefixTrace (sucC1Trace,trace c2Trace of c2Failure) 

19: end for 

20: end for 

21: Failures of R ← (Failures of R) ∪  (Failures of C2) 

22: return R  

In lines 7, 8, 16 and 17 of the Algorithm 1, there are for loops. In lines 7 and 8, each failure with the trace in 

sucC1TraceSet of process C1 will be modified. In lines 16 and 17, each trace in process C2 will be modified by adding 

each trace in sucC1TraceSet of process C1. Thus, the complexity of the Algorithm 1 would be O(n2), where n is the 

number of traces or failures in a process. 
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Recursion 

 
Given an Erasmus statement C1, a recursion loop{C1} means the process C1 executes re- peatedly. Namely, once 

a C1 finishes execution successfully, another C1 will start execution. In Chapter 3, the rule for calculating failures of 

loop{C1} is proposed as follows. 

 
failures(loop{C}) ={(s, X) | (s, X) ∈ failures(C)} 

 

∪   {(s1-s, X) | s1-
⟨C⟩ ∈ traces(C) ∧   (s, X) ∈ failures(C)} 

∪   . . . ∪   {(s1-s2- . . . -sn−1-sn, X)|si-
⟨C⟩ ∈ traces(C) 

∧ 1 ≤ i ≤ n − 1 ∧  (s, X) ∈ (failures(C))} 

 

Based on this rule, we propose Algorithm 2 for recursion loop{C1} as follows. In this algo- rithm, C1 repeats a 

specific number of times, and we use the sequential execution Algorithm 1 to calculate the recursion.  

 

Algorithm 2 recursion 

Input: Process C1, Integer repeatTime 

Output: Process R 

1: create an empty process R 

2: Integer i ← 0 

3: if repeatTime ≥ 1 then 

4:       for i from 1 to repeatTime do 

5: R ← sequentialExecution (R, C1) 

6: end for 

7: end if 

8: return R 

In line 4 of the Algorithm 2, there is a for loop that will call the Algorithm 1 a specific number of times. As the complexity 

of Algorithm 1 O(n2), the complexity of the Algorithm 2 is O(n3). 

 

Nondeterministic Choice 

 
In Erasmus, the nondeterministic choice case means the choice of actions is made internally by the process and is 

not determined by the environment. In Chapter 3, given two processes C1 and C2, the rule for calculating failures of 

case{C1 | C2} is proposed as follows. 
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failures(case{C1|C2}) ={(s, X)|(s, X) ∈ failures(C1 ∪   failures(C2)} 

 

Based on this rule, we propose Algorithm 3 for nondeterministic choice case{C1 | C2} as fol- lows. In the 

Algorithm 3, as C1 and C2 may have different alphabets, the alphabet of case{C1|C2} is the set union of the alphabet 

of C1 and the alphabet of C2. For C1, the refusal of each failure needs to be updated, as C1 may refuse to execute 

some events from C2. For C2, the refusal of each failure needs to be updated, as C2 may refuse to execute some events 

from C1. After this, the algorithm sets the failures of case{C1 | C2} to be the failures of C1, then add failures of C2 

into failures of case{C1 | C2}. 
 

Algorithm 3 nondeterministicChoice  
Input: Process C1, Process C2 

Output: Process R 

1: create an empty process R 

2: the alphabet of R ← setUnion (the alphabet of C1, the alphabet of C2) 

3: extend the refusal of each failure in failures of C1 by using the alphabet of C2 4: extend the refusal 

of each failure in failures of C2 by using the alphabet of C1 5: failures of R ← (failures of C1) ∪ 

(failures of C2) 

   6: return R  In the Algorithm 

3, failures of case{C1 | C2} is calculated by the union of failures of C1 and failures of C2. Thus, the complexity of 

the Algorithm 3 is O(n), where n is the number of failures 

in a process. 

 
 

Deterministic Choice 

 

In Erasmus, the deterministic choice select means the choice of actions is made externally by the environment 

and is not determined by the process itself. In Chapter 3, given two processes C1 and C2, the rule for calculating 

failures of failures(select{C1|C2}) is defined as follows. 

 
failures(select{C1|C2}) ={(s, X)|(s = ⟨⟩ ∧   (s, X) ∈ failures(C1) ∩   failures(C2)) 

 

∨ (s /= ⟨⟩ ∧  (s, X) ∈ failures(C1) ∪  failures(C2))} 

 
 

Based on this rule, we propose Algorithm 4 for nondeterministic choice select for deterministic choice as follows. 
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In the Algorithm 4, as C1 and C2 may have different alphabets, the alphabet of select{C1 | C2} is the set union of the 

alphabet of C1 and the alphabet of C2. For C1, the refusal of each failure needs to be updated, as C1 may refuse to 

execute some events from C2. For C2, the refusal of each failure need sto be updated, as C2 may refuse to execute 

some events from C1. After this, the algorithm calculates the intersection of the refusal of failure with ⟨⟩ trace in C1 

and the refusal of failure with ⟨⟩ trace in C2, adds a failure with ⟨⟩ trace and the refusal intersection into select{C1 | 

C2}, and then add C1 without the failure containing ⟨⟩ trace and C2 without the failure containing ⟨⟩ trace 

into select{C1 | C2}. 
 

Algorithm 4 deterministicChoice 

Input: Process C1, Process C2 

Output: Process R 

1: create an empty process R 

2: the alphabet of R ← setUnion (the alphabet of C1, the alphabet of C2) 

3: extend the refusal of each failure in failures of C1 by using the alphabet of C2 4: extend the refusal 

of each failure in failures of C2 by using the alphabet of C1 5: create a refusal c1Refusal ← the refusal 

of failure with ⟨⟩ trace in C1 

6: create a refusal c2Refusal ← the refusal of failure with ⟨⟩ trace in C2 

7: create a refusal c1qRefusal ←   setIntersection (c1Refusal , c2Refusal ) 

8:  create a failure c1c2Failure ←     (⟨⟩, c1c2Refusal ) 

9: C1 ←    remove the failure with ⟨⟩ trace in C1 10: 

C2 ←     remove the failure with ⟨⟩ trace in C2 11: 

failures of R ← (failures of R) + c1c2Failure 

12: failures of R ← (failures of R) ∪   (failures of C1) 

13: failures of R ← (failures of R) ∪   (C2) 

14: return R  

In the Algorithm 4, select{C1|C2} is calculated by modifying the failure with empty trace and by using the union 

of C1 and C2. Thus, The complexity of the Algorithm 4 is O(n), where n is the number of failures in a process. 

 

Parallel Execution 

 
Given two processes C1 and C2, parallel execution ǁ describes two processes communicatewith each other. Both 

process must agree on all actions that occur. In Chapter 3, the rule for calculating failures of C1 ǁ C2 is proposed as 

follows. 
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failures(C1 ǁ C2) ={(s, X ∪   Y )|((s, X) ∈ failures(C1) ∧   (s, Y ) ∈ failures(C2))} 

 
 

Based on this rule, we propose Algorithm 5, Algorithm 6 and Algorithm 7 for parallel execution ǁ as follows. In the 

algorithm parallelExecution, as C1 and C2 has different alphabets, the alphabet of C1 ǁ C2 is the set union of the 

alphabet of C1 and the alphabet of C2. For C1, the refusalof each failure needs to be updated, as C1 may refuse to 
execute some events from C2. For C2, the refusal of each failure needs to be updated, as C2 may refuse to execute 

some events from C1. After this, the Algorithm 6 calculates the failure with trace ⟨⟩ of C1 ǁ C2, and then it uses the 

Algorithm 7 to calculate the failures of next actions of C1 ǁ C2. 
Algorithm 5 parallelExecution 

Input: Process C1, Process C2 

Output: Process R 

1: create an empty process R 

2: the alphabet of R ← setUnion (the alphabet of C1, the alphabet of C2) 

3: extend the refusal of each failure in failures of C1 by using the alphabet of C2 4: extend the refusal 

of each failure in failures of C2 by using the alphabet of C1 5: failures of R ← 

buildInitCommunication(C1, C2) 

6:  failures of R ←     (failures of R) ∪   buildNextCommunication(⟨⟩,C1,C2); 

7: return R 
 

Algorithm 6 buildInitCommunication 
Input: Process C1, Process C2 

Output: Set of Failures F 

1: create an empty set of failures F 

2:   create a set of failures c1Failures ←    Failures of C1 3:   create a set of 

failures c2Failures ←    Failures of C2 4: for each failure c1Failure in 

c1Failures do 

5:   if the trace of c1Failures = ⟨⟩ then 

6: for each failure c2Failure in c2Failures do 

7: if the trace of c2Failure = ⟨⟩ then 

8: create an empty failure newFailure 

9: refusal of newFailure ←   setUnion(refusal of c1Failure, refusal of c2Failure) 

10: trace of newFailure ← ⟨⟩ 

11: F ← F + newFailure 

12: end if 

13: end for 
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14: end if 

15: end for 

16: return F 
 

Algorithm 7 buildNextCommunication 

Input: Trace t, Process C1, Process Q 

Output: Set of Failures F 

1: create an empty set of failures F 

2:   create a set of failures c1Failures ←    Failures of C1 3:   create a set of 

failures c2Failures ←    Failures of C2 4: for each failure c1Failure in 

c1Failures do 

5:      if subTrace (t, trace of c1Failure) and size of t + 1 = size of trace of c1Failure then 

6: for each failure c2Failure in c2Failures do 

7: if subTrace (t, trace of c2Failure) and size of t + 1 = size of trace of c2Failure then 

8: if compareTrace (trace of c1Failure, trace of c2Failure) then 

9: create an empty failure newFailure 

10: refusal of newFailure ←   setUnion(refusal of c1Failure, refusal of c2Failure) 

11: trace of newFailure ←   trace of c2Failure 

12: F ← F + newFailure 

13: F ←   F ∪   buildNextCommunication(trace of newFailure,C1,C2); 

14: end if 

15: end if 

16: end for 

17:      end if 

18: end for 

19: return F 

In lines 4 and 6 of the Algorithm 6, there are for loops to calculate the failure with trace ⟨⟩ of C1 ǁ C2. The complexity 

of Algorithm 6 is O(n2), where n is the number of failures in a process. To  calculate  the  failures  of  communications  

after  the  trace  ⟨⟩,  the  Algorithm  7  uses  for  loops  in lines 4 and 6, and recursively calls itself in line 13. The 
complexity of the Algorithm 7 is O(n3), where n is the number of failures in a process. As the Algorithm 5 uses the 

Algorithm 6 and the Algorithm 7, the complexity of Algorithm 5 is O(n3). 

 

Algorithms for Constructing Categories 
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In step 4 and step 5 of the framework, categories are built from failures of processes generated from design and 

abstraction of implementation. In Chapter 3, the category of failures is specified in definition 3.8.2 as follows. 

Category of Failures: Category of Failures: Each object is of the form failures to indicate a process. A 

Morphism failuresa → failuresb means the process with the failures from trace ⟨⟩ to the trace a evolves to 

the process with the failures from trace ⟨⟩ to the trace b, where failuresa ⊆ 

failuresb. 

Based on this definition, we propose Algorithm 8 and Algorithm 9 to construct categories as follows. In the 

Algorithm 8, a category can be built for a process to represent the evolving progress of the process. The category is a 

tree-like structure with root to represent the process with the empty trace. Each morphism between objects indicates 

an evolution from one process to another. The Algorithm 8 first builds the root, and then uses the Algorithm 9 to build 

objects after the root. 

Algorithm 8 buildCategoryFromProcess 

Input: Process P 

Output: Category R 

1: create an empty category R 

2: for each failure f in failures of P do 

3: if Trace of f = ⟨⟩ then 

4: Data of Root of R ← (Data of Root of R) + f 

5: end if 

6: end for 

7: children of Root of R ← buildChildrenNodes (Root of R, P ) 

8: return R 
 

Algorithm 9 buildChildrenNodes 

Input: Object obj, Process p 

Output: List of Objects chs 

1: create an empty list of object chs 

2: Trace trace ← the Longest Trace in Data of obj 

3: for each failure f in failures of p do 

4: if trace is the subtrace of the trace t of f and size of trace + 1 = size of t then 

5: create an empty object child 

6: Data of child ← Data of obj + f 

7: children of child ←   buildChildrenNodes (child , p) 
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8: chs ← chs + child 

9:      end if 

10: end for 

11: return chs 

In line 2 of the Algorithm 8, there is a for loop to calculate build the root object for the process with empty trace. In 

lines 3 and 7 of the Algorithm 9, there are a for loop and a recursive call to calculate the children of objects that are 

connected by morphisms. The complexity of the Algorithm 9 is O(n2), where n means the number of failures in a 

process or the number of objects in the category. As the Algorithm 8 uses the Algorithm 9, the complexity of the 

Algorithm 8 is O(n2). 

 

Algorithms for Constructing Functors 

 
As functor can be used to check structure preserving between two categories, in this research, functors are used 

to verify consistency of communications with traces and failures between design and implementation. Successful 

construction of such functor means the process communications in the implementation is consistent with the process 

communications in the design. Failing to construct such functor could indicate an inconsistency between the design 

and the implementation. 

To construct functors from categories of failures in design to categories of failures in implemen- 

tation, in Chapter 3, an approach for the construction is introduced as follows. 

For each object, ocd, in design, there must be a corresponding object, oci, in implementation, such that ocd can be mapped 

to oci when each trace in ocd has the same trace in oci, and the corresponding refusals in ocd are a subset of the 

corresponding refusals in oci. 

• For each morphism md : ocd1 → ocd2 in design, there must be a corresponding morphism mi : oci1 → oci2 in 

implementation, such that md can be mapped to mi when ocd1 and ocd2 can be mapped to oci1 and oci2 

respectively. 

Based on this approach, we propose algorithms for constructing functors as follows. In the Algorithm 10, it uses 

the Algorithm 11 and the Algorithm 12 to compare root objects and children objects in two categories. In the 

Algorithm 11, we can compare the trace and refusal of the object in the category of design to the trace and refusal of 

the object in the category of implementation by following the above mentioned approach for the construction. In the 

Algorithm 12, each child object in the category of design is compared with corresponding object in the category of 

implementation. 
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Algorithm 10 functor 

Input: Category dsg , Category imp 

Output: Boolean 

1: if compareTwoObjects(Root of dsg , Root of imp) then 

2: if compareChildrenObjects(Root of dsg , Root of imp) then 

3: return true 

4: end if 

5: end if 

6: return false 
 

Algorithm 11 compareTwoObjects 
Input: Object dsgObj , Object impObj 

Output: Boolean 

1: create failures dsgP ←    Data of dsgObj 2: create failures 

impP ← Data of impObj 3: create boolean flag 

4: for each failure dsgF in dsgP do 

5: flag ←   false 

6: for each failure impF in impP do 

7: if trace of dsgF = trace of impF and refusal of dsgF ⊆ refusal of impF then 

8: flag ← true 

9: break 

10: end if 

11: end for 

12: if flag =false then 

13: return false 

14: end if 

15: end for 

16: return true  

 

Algorithm 12 compareChildrenObjects 
 

Input: Object dsgObj , Object impObj 

Output: Boolean 

1: create a list of objects dsgChildren ←   Children of dsgObj 2: create a list of 

objects impChildren ←   Children of impObj 3: create boolean flag 

4: for each object dsgChild in dsgChildren do 
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5: flag ← false 

6: for each object impChild in impChildren do 

7: if compareTwoObject (dsgChild ,impChild ) then 

8: flag ← true 

9: if size of children of dsgChild > 0 then 

10: flag ← compareChildrenObjects(dsgChild , impChild ) 

11: break 

12: end if 

13: end if 

14: end for 

15: if flag=false then 

16: return false 

17:     end if 

18: end for 

19: return true  In lines 4 and 6 of 

the Algorithm 11, there are for loops used to compare two objects. The complex- 

ity of Algorithm 11 is O(n2), where n is the number of failures in a process. To compare children objects in two 

categories, the Algorithm 12 uses for loops in lines 4 and 6, calls the Algorithm 11 in line 7, and recursively calls 

itself in line 10. The complexity of the Algorithm 12 is O(n4), where n is the number of objects in a category. As the 

Algorithm 10 uses the Algorithm 11 and the Algorithm 12, the complexity of the Algorithm 10 is O(n4). 

 

Summary 

 
In this chapter, we propose several algorithms for generating failures, categories, and func- tors. In step 3 of the 

framework, algorithms are developed for automatically generating processes from abstraction of implementation, 

which include generating failures from sequential execution, recursion, nondeterministic choice, deterministic choice, 

and parallel execution in the abstraction of implementation in Erasmus. In step 4 and step 5 of the framework, 

algorithms are developed for generating categories of failures from design and abstraction of implementation. In step 

6, algo- rithms are developed for constructing functors from categories of failures in design to categories of failures 

in abstraction of implementation. 
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In the next chapter, we introduce verification between communications in implementation and properties of 

communications in Erasmus. In Erasmus, communications in implementation must conform to properties of 

communications. 

 

 

 
 

 

Chapter 7 

 

Verifying Properties of Communications 

 

Introduction 

 
In order for processes to communicate, communications in implementation need to conform to properties of 

communications in Erasmus. To support our research goal to build the categorical framework for verification, in this 

chapter, verification between communications in implementation and properties of communications in Erasmus is 

proposed and introduced. Section 7.2 briefs the contributions in verifying properties of communications. Section 7.3 

gives two properties of com- munications that Erasmus implementation must follow. Section 7.4 introduces the 

methodology for verifying communications in implementation against properties of communications in Erasmus. 

Section 7.5 provides a running example to illustrate the application of the methodology for verifica- tion. Section 7.6 

summarizes this chapter. 

 

Contributions 

Several contributions in verifying properties of communications are introduced as follows: 

 
• A methodology is proposed for verifying communications in implementation against proper- ties of 

communications in Erasmus. 
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• Data flow analysis is used to abstract and model communications in implementation. 

• Category theory is used to model properties of communications in Erasmus and model the abstraction of 

communications based on data flow analysis. 

• Functors are used to verify communications in implementation against properties of commu- nications in 

Erasmus. 

 

Properties of Communications in Erasmus 

 
Erasmus is a process-oriented programming language, which is based on the idea of CSP but with some 

differences [18, 21, 22, 25]. An Erasmus program consists of cells, processes, ports, protocols and channels. A cell, 

containing a collection of one or more processes or cells, provides the structuring mechanism for an Erasmus program. 

A process is a self-contained entity which performs computations, and communicates with other processes through 

its ports. A port, which is of a type of protocol, usually serves as an interface of a process for sending and receiving 

messages. A protocol specifies the type and the orderings of messages that can be sent and received by ports of the 

type of this protocol. A channel, which is of a type of protocol, must be built between two ports for two processes to 

communicate. Erasmus also offers operations for deterministic choices and nondeterministic choices by using 

keywords select and case respectively. 

In Erasmus, communication is as important as method invocation in object-oriented languages. If two processes 

p1 and p2 want to communicate, they must satisfy some requirements listed in Chapter 2. In this chapter, we focus on 

the following two properties: 

• The ProcessesCommunication property: Request are sent by a process through its client port (declared with ‘− 

’), then received at channel in of a channel and sent out by channel out of the channel, finally received by the 

other process at the server port (declared with ‘+’). 

• The Protocols property: Given a client port π1 of protocol t1 and a server port π2 of protocol t2, if π1 and π2 can 

communicate, t2 must satisfy t1. Here, t2 satisfies t1 is defined as that the set of types of requests of t1 must be a subset 

of the set of types of requests of t2, denoted by t1 ⊆ t2. 

• This means that, for any implementation in Erasmus, communications between processes in the implementation 

must conform to the ProcessesCommunication and Protocols properties. 
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Methodology 

 
To ensure implemented communications conform to the properties, we propose a methodology to model and 

verify communications against properties in Erasmus. The methodology consists of the following steps, each of which 

is discussed in detail later. 

(1) Step 1. Categorize Communications Properties: In this step, we need to model the properties of communications 

by using category theory. 

(2) Step 2. Abstract Communications in Implementation Based on Data Flow Analysis: In this step, we need to use 

data flow to analyze communications in implementation, and generate abstraction based on data flow analysis.  

(3) Step 3. Categorize Abstraction of Communications: In this step, we need to model the ab- straction of 

communications based on data flow analysis by using category theory. 

(4) Step 4. Verify Categories of Communications properties and Categories of abstraction of Communications: In 

this step, we need to construct functors to verify the categorical models of communications to the categorical 

models of communications properties. 

To illustrate the process of verifying communications against properties, the process steps are demonstrated on a 

running example. 

 

Illustration of a Example 

 
To illustrate the methodology for verifying communications against properties, a Hello World example is 

developed. In the following code, a message “Hello World” is sent from process person via client port r1 of protocol 

t1, forwarded through channel c of protocol t1, and received by process world via server port r2 of protocol t2. 

Protocol t1 is satisfied by protocol t2, denoted by t1 ⊆ t2, as request1: Word is a subset of request1: Word | request2 : 

Word. 

line 1: t1 = protocol { request1 : Word } 

line 2: t2 = protocol { request1 : Word | request2 : Word } 
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line 3: person = process r1 : - t1 { line 4: r1.request1 = "Hello World"; 

line 5: } 

 

line 6: world = process r2 : + t2 { 

line 7: message : Word = r2.request1; line 8: } 

 

line 9: sample = cell { 

line 10: c : t1; person(c); world(c); line 11: } 

With the application of the methodology for verification to this example, we are able to verify whether 

communications in implementation conforms to communications properties. 

 

Illustration of Step 1: Categorize 

Communications Properties 

 
For a communication to exist between two processes, ProcessesCommunication and Protocols properties must be 

satisfied. The aim of this step is to formalize these two properties by using category theory. 

Proposition 10. ProcCom is a category to model ProcessCommunication property. Its objects are process with client 

port, client port, channel in, channel out, server port, and process with server port; its morphisms between objects 

represent passing requests from one object to another object; and its identity morphism on each object represents no 

action on the object. 

Proof. (Fig. 7.1, in part, shows that ProcCom is a category) 

 
 

Figure 7.1: The ProcCom category 
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Objects: process with client port, client port, channel in, channel out, server port, and process 

with server port. 

Morphisms: pccl : process with client port → client port, clci : client port → channel in, cico : channel in →

 channel out , cosv : channel out → server port, svps : server port → process with server 

port, each of which represents passing requests from one object to another 

object. 

Identity morphisms: Idpc : process with client port → process with client port , Idcl : client port   →    client port, Idci    

: channel in →     channel in,   Idco : channel out    →     channel out , Idsv : server port →     server port, Idps : process 

with server port →     process with server port , each of which represents idle(no action) on the object. 

Composition: Given any morphisms m1 : obja → objb and m2 : objb →  objc, with codomain of m1 = domain of 

m2, there is composition morphism: m2 ◦ m1 = obj a → obj c . In Fig. 7.1, one of the composition morphisms, svps ◦ 

cosv ◦ cico ◦ clci ◦ pccl , is shown, which represents requestscan 

be sent from process with client port to process with server port. 

Associativity: For all morphisms m1 : obj a →  obj b , m2 : obj b → obj c and m3 : obj c → obj d , with codomain 

of m1 = domain of m2 and codomain of m2 = domain of m3, there are m3 ◦  (m2 ◦ m1) = m3 ◦  (obja → obj c ) = obj 

a → obj d , and (m3 ◦ m2) ◦ m1 = (obj b → obj d ) ◦ 

m1 = obj a → obj d . Thus, m3 ◦ (m2 ◦ m 1 ) = (m3 ◦ m2) ◦ m1. In Fig. 7.1, one example ofmorphisms 

with associativity, (svps ◦ cosv ◦ cico)◦ (clci ◦ pccl ) = (svps ◦ cosv )◦ (cico ◦ clci ◦ pccl ), is shown. 
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Proposition 11. Procls is a Category to model the Protocols property. Its objects are protocols defined in Erasmus 

program; its morphism represents the ⊆ relation between objects, which is one protocol is satisfied by another protocol; 

its identity morphism on each object represents the ⊆ relation between the object and itself. 

Proof. (Fig. 7.2, in part, shows that Procls is a category) 
 

 
Figure 7.2: A Sample Procls Category 

 

Objects: Each object represents a protocol. Such as, protocol 1 , protocol 2 , . . . , protocoln 

Morphisms: Let protocolx and protocoly be objects. If protocolx ⊆ protocoly , there is a mor- phism satisfyx,y : 

protocolx → protocoly . The morphism represents the subset relation between 

objects, which is one protocol is satisfied by another protocol (see Protocols property in Section 2.3). 

Identities: For each object, protocolm , there is an identity Idm : protocolm →    protocolm , which indicates protocolm 

⊆ protocolm . The identity morphism represents the subset relation between object and itself. 

Composition: Given any morphisms satisfyx,y : protocolx → protocoly and satisfyy,z : protocoly → protocolz , 

with codomain of satisfyx,y = domain of satisfyy,z , there is protocolx ⊆ protocoly ⊆ protocolz . Thus, there is a 

composition morphism: satisfyy,z ◦satisfyx,y : protocolx → protocolz . In Fig. 7.2, two of the composition morphisms, 

satisfy2 ,3 ◦ satisfy1 ,2 and satisfy4 ,5 ◦ satisfy2 ,3 , are shown. 

Associativity: For all morphisms satisfyw,x : protocolw → protocolx , satisfyx,y : protocolx → protocoly  and 

satisfyy,z  :  protocoly  → protocolz , with codomain of satisfyw,x = domain of satisfyx,y and codomain 

satisfyx,y = domain of satisfyy,z , there is protocolw ⊆ protocolx ⊆ protocoly ⊆ protocolz . Thus, there are satisfyy,z ◦ (satisfyx,y 

◦ satisfyw,x ) = satisfyy,z ◦ 

(protocolw → protocoly ) = protocolw → protocolz , and(satisfyy,z ◦ satisfyx,y ) ◦ satisfyw,x = (protocolx → protocolz ) ◦ 

satisfyw,x = protocolw → protocolz . So, satisfyy,z ◦ (satisfyx,y ◦ satisfyw,x ) = (satisfyy,z ◦ satisfyx,y ) ◦ satisfyw,x . In Fig. 7.2, 

one example of morphisms with as- sociativity, satisfy3,4 ◦(satisfy2,3 ◦satisfy1 ,2 ) = (satisfy 3,4 ◦satisfy2,3 )◦satisfy1,2 , is 

shown. 
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http://www.jetir.org/


© 2024 JETIR February 2024, Volume 11, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIRTHE2085 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e564  

Illustration of Step 2: Abstract Communications 

in Implementation Based onData Flow 

Analysis 

The aim of this step is to abstract communications in implementation based on data flow anal- ysis. Since our 

interests are in communications, an abstraction is created for extracting the code pertaining only to communications. 

For the purpose of abstraction, the Definition-Use data flow analysis is employed for tracing requests sent and 

received by processes via ports and channels. By a data flow analysis, a program of Erasmus can be translated to a 

data flow graph, where each node represents a statement fragment (that can either be an entire statement or a part of 

statement) and each edge represents flow of requests between nodes. 

The following notations are used for nodes in the data flow graph: (1). Defining Node of Sending Request 

(DEFR(r, p, n : f )) is a node, where the request to be sent is assigned to port r in process p in the statement fragment 

f in line n. (2). Usage Node of Receiving Request (USER(r, p, n : f )) is a node, where the request received at port r 

is used in process p in the statement fragment f in line n. (3). Node of Channel for Receiving Request (CRR(c, r, p, 

n : f )) is a node, where the channel c connected to port r of process p is used for receiving incoming request in 

statement fragment f in line n. (4). Node of Channel for Sending Request (CSR(c, r, p, n : f )) is a node, where the 

channel c connected to port r of process p is used for sending outgoing request in statement fragment f in line n. 

The data flow graph for the Hello World example is represented in Fig. 7.3. 

 

 
 

 

 

 

 

Figure 7.3: Data Flow Graph for The Hello World Example 

 

In this example, firstly data is defined in r1:request1 in line 4 and assigned to port r1 in process person, secondly 

the data is received at channel c in line 10, thirdly the data is sent out at channel c in line 10, and fourthly the data is 

received by port r2 in process world and used in line 7. 

 

 

 

  DEFR(r1,person,   

 CRR(c,r1,person, 4:r1.request1) 
   10:person(c)) 

CSR(c,r2,world, 
10:world(c)) 

USER(r2,world, 
7:=r2.request1) 
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Illustration of Step 3: Categorize Abstraction of 

Communications 

 
In the data flow graph, requests flow along the direction of edge from node A to node B, with the arrow indicating 

the direction of flow. This indicates the relation between nodes that the time of the execution of node A is earlier than 

the time of execution of node B. The nodes and edges in data flow graph can be formalized using category theory. 

Proposition 12. ComNodes is a category for the data flow graph of the Hello World example. 

Its objects represent the nodes in the dataflow graph; its morphisms represent “execute before or simultaneously”, 

indicated by “ ; and its identity morphism on each object represents no action on the object.  

 

Proof. (Fig. 7.4, in part, shows that ComNodes is a category) 

 
 

Figure 7.4: The ComNodes category 

 

Objects: defr represents node DEFR(r1 , person, 4 : r1 : request1 ), crr represents node CRR(c, r1 , person, 10 :  

person(c)),  csr  represents node CSR(c, r2 , world, 10  :  world (c)), user represents node USER(r2 , world, 7 : r2 

.request1 ). 

Morphisms: defr  “ crr  : defr  →    crr , crr  “ csr  : crr  →    csr , csr  “ usr  : itcsr  →    user , each of which represents 

““” relation between the order of execution of objects. 

Identity morphisms: Iddefr : defr → defr , Idcrr : crr → crr , Idcsr : csr → csr , Idusr : 

usr  → usr , each of which represents the execution of the object is ““” to the execution of itself. 

Composition: Given any morphisms x “ y: x → y and y “ z : y → z, and with codomain 

of x “ y = domain of y “ z, there is x “ y “ z. Thus, there is a composition morphism: y “ z 

◦ x “ y: x → z. In Fig. 7.4, two of the composition morphisms, crr “ csr ◦ defr  “ crr and 

csr “ user ◦ crr “ csr , are shown. 

Associativity: For all morphisms w “ x : w  →    x, x  “ y  :  x  →     y, and y  “ z  :  y  →     z, with codomain of w “ x  

= domain of x  “ y  and codomain x  “ y  = domain of y  “ z,  there is w “  x “  y “  z.   Thus, there are y “  z ◦  (x “  y ◦  w 

“  x) = y “  z ◦  (w →      y) = w →      z, and (y “ z ◦ x “ y) ◦ w “ x = (z → x) ◦ w “ x = w → z. So, y “ z ◦ (x “ y ◦ w “x) = (y “ z 

◦ x “ y) ◦ w “ x. In Fig. 7.4, one example of morphisms with associativity,(csr “ user ◦ crr 

“ csr ) ◦ defr “ crr = csr “ user ◦ (crr “ csr ◦ defr “ crr ), is shown. 

 

 

 

 
 

defr defr≼crr crr crr≼csr csr csr≼user user 
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Illustration of Step 4: Verify Categories of 

Communications Properties and Categories of 

Abstraction of Communications 

The aim of this step is to verify consistency between design and implementation by construct- ing categories and 

functors. If a property of Erasmus is satisfied by implementation, there must exist a functor that maps the category of 

the property to the category of abstraction of implemen- tation. Failing to construct such functor could indicate an 

inconsistency between the implemented system and the specified communication property. The following 

propositions are used to verify the consistency between the properties and implementation for the Hello World 

Example. 

 

Illustration of Step 4.1: Verify 

ProcessesCommunication Property 

 
To verify that if all communications conform to the ProcessesCommunication property, each time, two processes 

with their ports and the channel involved in the communication are modeled as a subcategory of the category of data 

flow graph of the program, then verify if there is a functor from the ProcCom category to the subcategory.  

 

Construct Subcategories 

 
SubPCNodes is a subcategory of ComNodes. Its objects are objects from ComNodes, which are defr , crr , csr 

,user ; its morphisms are morphisms from ComNodes on those objects, which are 

defr “ crr , crr “ csr , and csr “ user ; and its identities are identities from ComNodes, which 

are Iddefr , Idcrr , Idcsr , and Iduser . 

 
Proof. (Fig. 7.5, in part, shows that SubPCNodes is a subcategory) 

 

 
Figure 7.5: The SubPCNodes Category 

 

 

 
defr defr≼crr crr crr≼csr csr csr≼user user 
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 defr defrعcrr crr crrعcsr csr csrعuser user 

SubPCNodes Category 
Iduser ל csrعuser ל crrعcsr ל defrعcrr ל Iddefr 

 

 

As SubPCNodes contains all the nodes, morphisms, and identities of ComNodes, any com- position morphism 

of SubPCNodes also exists in ComNodes. Thus, definitely SubPCNodes is a 

subcategory of ComNodes. In Fig. 7.5, composition morphisms are not shown explicitly. 

 
Since the Hello World example has only two processes, only one subcategory is created for the example, which 

is exactly like the category of the data flow graph of the program. If a program has more processes, a corresponding 

subcategory should be created for each two of them in the communication. 

 
Construct Functors 

 
FPC: ProcCom → SubPCNodes is a functor. Fig. 7.6, in part, shows that FPC is a functor 

This functor can be constructed with the following approach. 

 

ProcCom Category 
 

 

 
 

process with 
client port 

 

 

 

 
 

client 
port 

 

 
 
 

channel 
in 

 

 
 

channel 
out 

 

 
 
 

server 
port 

 

 
 

process with 
server port 

 

 

 

 

 

 

 

 

 

 
Figure 7.6: The FPC functor 

 

Objects Mapping: (1). As defr contains the information of process person and client port r1, process with client 

port maps to defr , and client port maps to defr . (2). As crr contains the information of channel c with connection to 

client port r1, channel in maps to crr . (3). As csr contains the information of channel c with connection to server port 

r2, channel out maps to csr . (4). As user contains the information of process world and server port r2, process with 

server port user and server port maps to user . 

Morphisms Mapping: pccl maps to Iddefr , clci maps to defr “ crr , cico maps to crr “ csr , cosv maps to csr “ user 

, and svps maps to Iduser . 

Identities Mapping: Idpc maps to Iddefr , Idcl maps to Iddefr , Idci maps to Idcrr , Idco maps to 

Idcsr , Idsv  maps to Iduser , and Idps maps to Iduser . 

Composition Morphisms Mapping: Given any morphisms morp1 : x → y and morp2 : y → z of ProcCom, wiht 

FP
C 
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codomain of x “ y= domain of y “ z, morp1 maps to xJ “ yJ, morp2 maps to yJ  “ zJ, and x maps to xJ, y maps to yJ, z maps 

to zJ, where xJ  “ yJ  and yJ  “ zJ  in 

SubPCNodes, with codomain of xJ “ yJ= domain of yJ “ zJ. As there are a composition morphism: 

morp2 ◦ morp1 : x → z in ProcCom, and a composition morphism: yJ “ zJ ◦ xJ “ yJ : xJ → zJ in SubPCNodes, thus morp2 ◦ 

morp1 maps to yJ “ zJ ◦ xJ “ yJ. In Fig. 7.6, one of the composition morphisms mappings, (svps ◦ cosv ◦ cico ◦ clci ◦ pccl ) 

maps to (Iduser ◦ csr “ user ◦ crr “ csr ◦ defr “ crr ◦ Iddefr ), is shown. 

As functor FPC is successfully constructed, the implementation of the Hello World example conforms to 

ProcessesCommunication property. 

 

Illustration of Step 4.2: Verify Protocols 

Property 

 
To verify that if all communications conform to the Protocols property, each time, the client port and the server 

port involved in the communication are modeled as a subcategory of the category of data flow graph of the program, 

then verify if there is a functor from the category of protocols of the program to the subcategory. 

 

Construct Subcategories 

 
According to proposition 2, ProtlHW is a category that models protocols used by ports in the Hello World 

Example. Fig. 7.7, in part, shows that ProtlHW is a category. Its objects are t1 and t2, which represent the protocol 

t1 and protocol t2 ; its morphism is satisfyt1 ,t2 : t1 → t2 , which represents t1 ⊆ t2; its identities are Idt1 : t1 → t1 and 

Idt2 : t2 → t2, which represents t1 ⊆ t1 

and t2 ⊆ t2. In Fig. 7.7, composition morphisms are not shown explicitly. 

 
 

Figure 7.7: The ProtlHW Category 

 
Proposition 13. SubPTNodes is a subcategory of ComNodes, which models the client port and 

the server port involved in the communication. 

 
Proof. (Fig. 7.8, in part, shows that SubPTNodes is a subcategory) 

  
t1    t2 

http://www.jetir.org/


© 2024 JETIR February 2024, Volume 11, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIRTHE2085 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e569  

 

 

 
Figure 7.8: The SubPTNodes Category 

 
Objects: crr and csr of SubPTNodes are objects of ComNodes, which represents port r1 and 

port r2 respectively. 

Morphisms: crr “ csr of SubPTNodes is the morphism crr “ csr of ComNodes 

Identities: Idcrr and Idcsr of SubPTNodes are identities of ComNodes 

Composition: Given any morphisms x “ y : x → y and y “ z : y → z of SubPTNodes, with codomain of x “ y= 

domain of y “ z, there is x “ y “ z. Thus, there is a composition morphism: y “ z ◦ x “ y : x → z in SubPTNodes. Since 

all objects and morphisms of SubPTNodes are objects and morphisms of ComNodes respectively, the composition 

morphism y “ z ◦ x “ y : x → z also exists in ComNodes. In Fig. 7.8, one of the composition morphisms of SubPTNodes, 

crr “ csr ◦ Idcrr , is shown. It is from the composition morphism crr “ csr ◦ Idcrr of ComNodes.

  

SubPTNodes Category 

c
rrعcsr ל Idcrr 

crr crrعcsr csr 

  

ComNodes Category 

defr defrعcrr crr crrعcsr csr csrعuser user 
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Since the Hello World example has only two ports in the communication, one subcategory is created for the 

example. If a program has more ports, a corresponding subcategory should be created for each two ports involved in 

the communication. 

 
Construct Functors 

 
FPT: ProtlHW → SubPTNodes is a functor. Fig. 7.9, in part, shows that FPT is a functor. 

This functor can be constructed with the following approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.9: The FPT Functor 

 

Objects Mapping: (1). As crr contains the information of client port r1 of protocol t1, t1 maps 

to crr. 2) As csr contains the information of server port r2 of protocol t2, t2 maps to csr. 

Morphisms Mapping: satisfyt1 ,t2 maps to crr “ csr . Identities Mapping: Idt1 maps 

to Idcrr, and Idt2 maps to Idcsr. 

Composition Morphisms Mapping: Given any morphisms morp1 : x →  y and morp2 : y →  z of ProtlHW, with 

codomain of morp1 = domain of morp2 . morp1 maps to xJ      “ yJ, morp2 maps to yJ   “ zJ, and x maps to xJ,  y maps to yJ,  

z maps to zJ, where xJ “ yJ    and yJ   “ zJin 

SubPTNodes, with codomain of xJ  “ yJ  = domain of yJ  “ zJ. As there are a composition 

morphism: morp2 ◦ morp1 : x →    z in ProtlHW, and a composition morphism: yJ   “ zJ ◦ xJ   “ yJ
 

: xJ → zJ in SubPTNodes, thus morp2 ◦ morp1 maps to yJ “ zJ ◦ xJ “ yJ. In Fig. 7.9, one of the composition morphisms 

mappings, satisfyt1 ,t2 ◦ Idt1 maps to crr “ csr ◦ Idcrr , is shown.

 

 

 

  ProtHW Category  

t1 t2 

crr crrعcsr csr 

SubPTNodes Category 

FP
T 
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As functor FPT is successfully constructed, the implementation of the Hello World example conforms to 

Protocols property. 

 

Summary 

 
This chapter introduces a methodology based on category theory and data flow analysis for mod- eling and 

verifying properties of communications in Erasmus. To explain the methodology, a simple Hello World program 

implemented in Erasmus is chosen. With the application of this methodolo- gy to the program, its feasibility is 

successfully proved. In particular, this chapter introduces two properties of communications, abstracts the program 

with data flow analysis, constructs categories of these properties and abstractions of the program, and verifies 

consistency between properties and the program with functors. 

In the next chapter, we summarize the research contributions by providing conclusion and pro- pose possible 

future work. 

 

 

 

Chapter 8 

 

Conclusion and Future Work 

 
This chapter summarizes the research in this thesis by providing conclusion and possible future work. In Section 

8.1, we provide the conclusion from the research in this thesis. Section 8.2 reviews some possible future work. 

 

Conclusion 

 
This research aims to verify the consistency between design and implementation of concurrent systems developed 

by process-oriented programming languages. To achieve the goal, we proposed an innovative framework to verify 

consistency of process communications by using CSP, Erasmus, abstract interpretation, data flow analysis, and 

category theory. 
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Specifically, several innovative contributions are introduced in this thesis as follows: 

 
• An categorical framework for verification is proposed. 

 
• Rules for abstracting implementation in Erasmus are proposed. 

 
• Rules for analyzing traces and failures from abstraction of implementation in Erasmus are proposed.  

• Category theory is used to model communications in design and implementation.  

 
• Functors are used to verify consistency of communications between design and implementa- tion. 

• Algorithms are developed for analyzing process operations in Erasmus, such as sequential execution, recursion, 

nondeterministic choice, deterministic choice, and parallel execution.  

• Algorithms are developed for constructing categories from failures of processes.  

 
• Algorithms are developed for constructing functors between categories. 

 
• A methodology is proposed for verifying communications in implementation against proper- ties of 

communications in Erasmus. 

• Data flow analysis is used to abstract and model communications in implementation. 

 
• Category theory is used to model properties of communications in Erasmus and model the abstraction of 

communications based on data flow analysis. 

• Functors are used to verify communications in implementation against properties of commu- nications in 

Erasmus. 

 

Directions For Future Research 

Our work suggests several directions for future work. These directions are as follows. 
 

Using Monoidal Category to Model 

Communications 

 
Many of the categories have a binary operation on objects and arrows. A monoidal category is a category equipped 

with a category C, a binary operator bifunctor ⊗ : C ×  C →    C, and a unit u, which satisfies associativity, left identity, 

right identity and coherence conditions [48]. In a monoidal category, it uses a bifunctor to take two objects in a 

category and yield an object in the same category. The allowance of this concept to the present work is that, in this 

field of research, there often are several binary operations on processes, such as sequential execution, deterministic 

choice, nondeterministic choice, and parallel execution. Each of these binary operations takes two processes and 

generates a process. For some operations, there may exist a process acting as the unit.   For example, the process 
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STOP is a unit in the deterministic choice operation, such that 

P Q STOP = P. The similarities between monoidal category and binary operations on processes inspire us to work on the 

direction of using monoidal category to model process communications in future. 

 

 
 

Analyzing communications with temporal constraints is a future direction of our research as well. Temporal 

constraints were proposed by lamport [59], which introduced the “happens before” relation, denoted by “→ ”. As its 

name implies, e1 → e2 if event e1 happens before, or occurs previously to, event e2. The “happens before” relation is a 

strict partial order [59]. When compared with traces in CSP, temporal constraints focus on ”happen before” relation 

between events, while traces record the possible sequences of events occurred. With temporal constraints, in some 

cases, it may not be necessary to build completed traces of events, as partial order from temporal constraints could 

indicate the ordering of events in traces. 
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